Action Spotting and Temporal Attention Analysis in Soccer Videos

H. Minoura, Tsubasa Hirakawa, Takayoshi Yamashita, H. Fujiyoshi, Mitsuru Nakazawa, Yeongnam Chae, B. Stenger
{"title":"Action Spotting and Temporal Attention Analysis in Soccer Videos","authors":"H. Minoura, Tsubasa Hirakawa, Takayoshi Yamashita, H. Fujiyoshi, Mitsuru Nakazawa, Yeongnam Chae, B. Stenger","doi":"10.23919/MVA51890.2021.9511342","DOIUrl":null,"url":null,"abstract":"Action spotting is the task of finding a specific action in a video. In this paper, we consider the task of spotting actions in soccer videos, e.g., goals, player substitutions, and card scenes, which are temporally sparse within a complete game. We spot actions using a Transformer model, which allows capturing important features before and after action scenes. Moreover, we analyze which time instances the model focuses on when predicting an action by observing the internal weights of the transformer. Quantitative results on the public SoccerNet dataset show that the proposed method achieves an mAP of 81.6%, a significant improvement over previous methods. In addition, by analyzing the attention weights, we discover that the model focuses on different temporal neighborhoods for different actions.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Action spotting is the task of finding a specific action in a video. In this paper, we consider the task of spotting actions in soccer videos, e.g., goals, player substitutions, and card scenes, which are temporally sparse within a complete game. We spot actions using a Transformer model, which allows capturing important features before and after action scenes. Moreover, we analyze which time instances the model focuses on when predicting an action by observing the internal weights of the transformer. Quantitative results on the public SoccerNet dataset show that the proposed method achieves an mAP of 81.6%, a significant improvement over previous methods. In addition, by analyzing the attention weights, we discover that the model focuses on different temporal neighborhoods for different actions.
足球录像中的动作识别与时间注意力分析
动作定位是在视频中找到特定动作的任务。在本文中,我们考虑在足球视频中识别动作的任务,例如,进球,球员替换和卡片场景,这些在完整的比赛中是暂时稀疏的。我们使用Transformer模型来识别动作,它允许在动作场景之前和之后捕获重要的特性。此外,我们通过观察变压器的内部权重来分析模型在预测动作时关注的时间实例。在SoccerNet公共数据集上的定量结果表明,该方法的mAP值达到了81.6%,比以前的方法有了显著的提高。此外,通过对注意权值的分析,我们发现该模型对不同的动作关注不同的时间邻域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信