{"title":"Ultra-low voltage and low power UWB CMOS LNA using forward body biases","authors":"Chih-Shiang Chang, Jyh-Chyurn Guo","doi":"10.1109/RFIC.2013.6569553","DOIUrl":null,"url":null,"abstract":"An ultra-wideband (UWB) low noise amplifier (LNA) was designed and fabricated using 0.18μm 1.8V CMOS technology. The adoption of forward body biases (FBB) in a 3-stage distributed amplifier enables an aggressive scaling of the supply voltages and gate input voltage to 0.6V. The low voltage feature from FBB leads to more than 50% power consumption saving to 4.2mW. The measured power gain (S21) is higher than 10dB in 3.1~8.1GHz and noise figure is 2.83~4.7 dB in the wideband of 2~10GHz. Superior linearity is achieved with IIP3 as high as 4.2dBm and 12.5dBm at 6.5GHz and 10GHz, respectively.","PeriodicalId":203521,"journal":{"name":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2013.6569553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
An ultra-wideband (UWB) low noise amplifier (LNA) was designed and fabricated using 0.18μm 1.8V CMOS technology. The adoption of forward body biases (FBB) in a 3-stage distributed amplifier enables an aggressive scaling of the supply voltages and gate input voltage to 0.6V. The low voltage feature from FBB leads to more than 50% power consumption saving to 4.2mW. The measured power gain (S21) is higher than 10dB in 3.1~8.1GHz and noise figure is 2.83~4.7 dB in the wideband of 2~10GHz. Superior linearity is achieved with IIP3 as high as 4.2dBm and 12.5dBm at 6.5GHz and 10GHz, respectively.