Hybrid Classifier Systems for Intrusion Detection

T. Chou, Tsung-Nan Chou
{"title":"Hybrid Classifier Systems for Intrusion Detection","authors":"T. Chou, Tsung-Nan Chou","doi":"10.1109/CNSR.2009.51","DOIUrl":null,"url":null,"abstract":"This paper describes a hybrid design for intrusion detection that combines anomaly detection with misuse detection. The proposed method includes an ensemble feature selecting classifier and a data mining classifier. The former consists of four classifiers using different sets of features and each of them employs a machine learning algorithm named fuzzy belief k-NN classification algorithm. The latter applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The outputs of ensemble feature selecting classifier and data mining classifier are then fused together to get the final decision. The experimental results indicate that hybrid approach effectively generates a more accurate intrusion detection model on detecting both normal usages and malicious activities.","PeriodicalId":103090,"journal":{"name":"2009 Seventh Annual Communication Networks and Services Research Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh Annual Communication Networks and Services Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSR.2009.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper describes a hybrid design for intrusion detection that combines anomaly detection with misuse detection. The proposed method includes an ensemble feature selecting classifier and a data mining classifier. The former consists of four classifiers using different sets of features and each of them employs a machine learning algorithm named fuzzy belief k-NN classification algorithm. The latter applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The outputs of ensemble feature selecting classifier and data mining classifier are then fused together to get the final decision. The experimental results indicate that hybrid approach effectively generates a more accurate intrusion detection model on detecting both normal usages and malicious activities.
入侵检测的混合分类器系统
本文描述了一种结合异常检测和误用检测的混合入侵检测设计。该方法包括一个集成特征选择分类器和一个数据挖掘分类器。前者由四个使用不同特征集的分类器组成,每个分类器使用一种称为模糊信念k-NN分类算法的机器学习算法。后者采用数据挖掘技术,从训练网络流量数据中自动提取计算机用户的正常行为。然后将集成特征选择分类器和数据挖掘分类器的输出融合在一起,得到最终的决策。实验结果表明,混合方法在检测正常用途和恶意活动方面都能有效地生成更准确的入侵检测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信