Improved Image Retrieval Using Automatic Image Sorting and Semi-automatic Generation of Image Semantics

K. U. Barthel
{"title":"Improved Image Retrieval Using Automatic Image Sorting and Semi-automatic Generation of Image Semantics","authors":"K. U. Barthel","doi":"10.1109/WIAMIS.2008.56","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new image search system using keyword annotations and low-level visual meta-data to generate inter-image relationships. Unlike other approaches the new system does not try to learn the degree of confidence between images and associated keywords. We rather propose to model the degree of similarity between images by building up a network of linked images. The weights of the inter-image links are learned from the userspsila interaction with the system only. For each image search a set of candidate images is selected from a visually sorted arrangement of result images. This candidate set is used to refine the result by filtering out non-suiting images from a larger set of further result images. Semantic inter-image relation-ships of images can be modeled by collecting the candidate sets from many searches. Our system improves Internet image search significantly.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we propose a new image search system using keyword annotations and low-level visual meta-data to generate inter-image relationships. Unlike other approaches the new system does not try to learn the degree of confidence between images and associated keywords. We rather propose to model the degree of similarity between images by building up a network of linked images. The weights of the inter-image links are learned from the userspsila interaction with the system only. For each image search a set of candidate images is selected from a visually sorted arrangement of result images. This candidate set is used to refine the result by filtering out non-suiting images from a larger set of further result images. Semantic inter-image relation-ships of images can be modeled by collecting the candidate sets from many searches. Our system improves Internet image search significantly.
基于自动图像分类和半自动图像语义生成的改进图像检索
在本文中,我们提出了一个新的图像搜索系统,使用关键字注释和低级视觉元数据来生成图像间的关系。与其他方法不同,新系统不会尝试学习图像和相关关键字之间的置信度。我们建议通过建立一个链接图像的网络来模拟图像之间的相似程度。图像间链接的权重仅从用户与系统的交互中学习。对于每个图像搜索,从结果图像的视觉排序安排中选择一组候选图像。该候选集用于通过从更大的结果图像集中过滤掉不适合的图像来优化结果。通过收集多次搜索的候选集,可以对图像的语义间关系进行建模。该系统大大提高了网络图像搜索的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信