Active learning based robust monocular vehicle detection for on-road safety systems

Sayanan Sivaraman, M. Trivedi
{"title":"Active learning based robust monocular vehicle detection for on-road safety systems","authors":"Sayanan Sivaraman, M. Trivedi","doi":"10.1109/IVS.2009.5164311","DOIUrl":null,"url":null,"abstract":"In this paper, the framework is presented for using active learning to train a robust monocular on-road vehicle detector for active safety, based on Adaboost classification and Haar-like rectangular image features. An initial vehicle detector was trained using Adaboost and Haar-like rectangular image features and was very susceptible to false positives. This detector was run on an independent highway dataset, storing true detections and false positives to obtain a selectively sampled training set for the active learning training iteration. Various configurations of the newly trained classifier were tested, experimenting with the trade-off between detection rate and false detection rate. Experimental results show that this method yields a vehicle classifier with a high detection rate and low false detection rate on real data, yielding a valuable addition to environmental awareness for intelligent active safety systems in vehicles.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

In this paper, the framework is presented for using active learning to train a robust monocular on-road vehicle detector for active safety, based on Adaboost classification and Haar-like rectangular image features. An initial vehicle detector was trained using Adaboost and Haar-like rectangular image features and was very susceptible to false positives. This detector was run on an independent highway dataset, storing true detections and false positives to obtain a selectively sampled training set for the active learning training iteration. Various configurations of the newly trained classifier were tested, experimenting with the trade-off between detection rate and false detection rate. Experimental results show that this method yields a vehicle classifier with a high detection rate and low false detection rate on real data, yielding a valuable addition to environmental awareness for intelligent active safety systems in vehicles.
基于主动学习的道路安全系统鲁棒单目车辆检测
本文提出了基于Adaboost分类和haar样矩形图像特征,利用主动学习训练鲁棒单目道路车辆主动安全检测器的框架。最初的车辆检测器使用Adaboost和haar样矩形图像特征进行训练,并且非常容易出现误报。该检测器在独立的高速公路数据集上运行,存储真检测和假阳性,以获得选择性采样的训练集,用于主动学习训练迭代。对新训练的分类器的各种配置进行了测试,实验了检测率和误检率之间的权衡。实验结果表明,该方法对真实数据具有高检测率和低误检率的车辆分类器,为车辆智能主动安全系统的环境意识提供了有价值的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信