A Comparison of Strategies for Incorporating Nuisance Variables into Predictive Neuroimaging Models

A. Rao, J. Monteiro, J. Ashburner, L. Portugal, Orlando Fernandes Junior, L. Oliveira, M. Pereira, J. Miranda
{"title":"A Comparison of Strategies for Incorporating Nuisance Variables into Predictive Neuroimaging Models","authors":"A. Rao, J. Monteiro, J. Ashburner, L. Portugal, Orlando Fernandes Junior, L. Oliveira, M. Pereira, J. Miranda","doi":"10.1109/PRNI.2015.28","DOIUrl":null,"url":null,"abstract":"In this paper we compare two different methods for dealing with so-called nuisance variables (NV) when training models to predict clinical/psychometric scales from neuroimaging data. In the first approach, the NV are used to adjust the imaging data by 'regressing out' their contribution to the image features. In the second approach, the NV are included as additional predictors in the model with a separate kernel that controls their contribution to the prediction function. We evaluate these methods using data from an fMRI and a structural MRI study, and discuss the results and interpretation of the two modelling approaches.","PeriodicalId":380902,"journal":{"name":"2015 International Workshop on Pattern Recognition in NeuroImaging","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2015.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper we compare two different methods for dealing with so-called nuisance variables (NV) when training models to predict clinical/psychometric scales from neuroimaging data. In the first approach, the NV are used to adjust the imaging data by 'regressing out' their contribution to the image features. In the second approach, the NV are included as additional predictors in the model with a separate kernel that controls their contribution to the prediction function. We evaluate these methods using data from an fMRI and a structural MRI study, and discuss the results and interpretation of the two modelling approaches.
将有害变量纳入预测神经影像学模型的策略比较
在本文中,我们比较了两种不同的方法来处理所谓的干扰变量(NV)训练模型预测临床/心理测量量表从神经影像学数据。在第一种方法中,使用NV通过“回归”其对图像特征的贡献来调整成像数据。在第二种方法中,NV作为额外的预测器包含在模型中,具有单独的核,控制它们对预测函数的贡献。我们使用功能磁共振成像和结构磁共振成像研究的数据来评估这些方法,并讨论两种建模方法的结果和解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信