The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?

Anthony Strittmatter, Conny Wunsch
{"title":"The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?","authors":"Anthony Strittmatter, Conny Wunsch","doi":"10.2139/ssrn.3798933","DOIUrl":null,"url":null,"abstract":"The vast majority of existing studies that estimate the average unexplained gender pay gap use unnecessarily restrictive linear versions of the Blinder-Oaxaca decomposition. Using a notably rich and large data set of 1.7 million employees in Switzerland, we investigate how the methodological improvements made possible by such big data affect estimates of the unexplained gender pay gap. We study the sensitivity of the estimates with regard to i) the availability of observationally comparable men and women, ii) model flexibility when controlling for wage determinants, and iii) the choice of different parametric and semi-parametric estimators, including variants that make use of machine learning methods. We find that these three factors matter greatly. Blinder-Oaxaca estimates of the unexplained gender pay gap decline by up to 39% when we enforce comparability between men and women and use a more flexible specification of the wage equation. Semi-parametric matching yields estimates that when compared with the Blinder-Oaxaca estimates, are up to 50% smaller and also less sensitive to the way wage determinants are included.","PeriodicalId":448175,"journal":{"name":"Comparative Political Economy: Comparative Capitalism eJournal","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Political Economy: Comparative Capitalism eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3798933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The vast majority of existing studies that estimate the average unexplained gender pay gap use unnecessarily restrictive linear versions of the Blinder-Oaxaca decomposition. Using a notably rich and large data set of 1.7 million employees in Switzerland, we investigate how the methodological improvements made possible by such big data affect estimates of the unexplained gender pay gap. We study the sensitivity of the estimates with regard to i) the availability of observationally comparable men and women, ii) model flexibility when controlling for wage determinants, and iii) the choice of different parametric and semi-parametric estimators, including variants that make use of machine learning methods. We find that these three factors matter greatly. Blinder-Oaxaca estimates of the unexplained gender pay gap decline by up to 39% when we enforce comparability between men and women and use a more flexible specification of the wage equation. Semi-parametric matching yields estimates that when compared with the Blinder-Oaxaca estimates, are up to 50% smaller and also less sensitive to the way wage determinants are included.
用大数据重新审视性别薪酬差距:方法选择重要吗?
绝大多数现有的研究都使用了不必要的布林德-瓦哈卡分解的限制性线性版本来估计无法解释的平均性别工资差距。我们利用瑞士170万名员工的丰富而庞大的数据集,调查了这种大数据所带来的方法改进如何影响对无法解释的性别薪酬差距的估计。我们研究了以下方面估计的敏感性:i)观察上可比较的男性和女性的可用性,ii)控制工资决定因素时的模型灵活性,以及iii)不同参数和半参数估计器的选择,包括使用机器学习方法的变体。我们发现这三个因素非常重要。布林德-瓦哈卡估计,当我们强制执行男女之间的可比性,并使用更灵活的工资方程规范时,无法解释的性别工资差距下降了39%。与Blinder-Oaxaca的估计相比,半参数匹配产量估计值要小50%,而且对包括工资决定因素的方式也不那么敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信