Matching People Across Surveillance Cameras

Raphael C. Prates, W. R. Schwartz
{"title":"Matching People Across Surveillance Cameras","authors":"Raphael C. Prates, W. R. Schwartz","doi":"10.5753/sibgrapi.est.2019.8306","DOIUrl":null,"url":null,"abstract":"This work addresses the person re-identification problem, which consists on matching images of individuals captured by multiple and non-overlapping surveillance cameras. Works from literature tackle this problem proposing robust feature descriptors and matching functions, where the latter is responsible to assign the correct identity for individuals and is the focus of this work. Specifically, we propose two matching methods: the Kernel MBPLS and the Kernel X-CRC. The Kernel MBPLS is a nonlinear regression model that is scalable with respect to the number of cameras and allows the inclusion of additional labelled information (e.g., attributes). Differently, the Kernel X-CRC is a nonlinear and multitask matching function that can be used jointly with subspace learning approaches to boost the matching rates. We present an extensive experimental evaluation of both approaches in four datasets (VIPeR, PRID450S, WARD and Market-1501). Experimental results demonstrate that the Kernel MBPLS and the Kernel X-CRC outperforms approaches from literature. Furthermore, we show that the Kernel X-CRC can be successfuly applied in large-scale and multiple cameras datasets.","PeriodicalId":119031,"journal":{"name":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"57 16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2019.8306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work addresses the person re-identification problem, which consists on matching images of individuals captured by multiple and non-overlapping surveillance cameras. Works from literature tackle this problem proposing robust feature descriptors and matching functions, where the latter is responsible to assign the correct identity for individuals and is the focus of this work. Specifically, we propose two matching methods: the Kernel MBPLS and the Kernel X-CRC. The Kernel MBPLS is a nonlinear regression model that is scalable with respect to the number of cameras and allows the inclusion of additional labelled information (e.g., attributes). Differently, the Kernel X-CRC is a nonlinear and multitask matching function that can be used jointly with subspace learning approaches to boost the matching rates. We present an extensive experimental evaluation of both approaches in four datasets (VIPeR, PRID450S, WARD and Market-1501). Experimental results demonstrate that the Kernel MBPLS and the Kernel X-CRC outperforms approaches from literature. Furthermore, we show that the Kernel X-CRC can be successfuly applied in large-scale and multiple cameras datasets.
通过监控摄像头匹配人
这项工作解决了人的重新识别问题,该问题包括对多个非重叠监控摄像机捕获的个人图像进行匹配。来自文献的作品解决了这个问题,提出了鲁棒特征描述符和匹配函数,其中后者负责为个体分配正确的身份,是本工作的重点。具体来说,我们提出了两种匹配方法:内核MBPLS和内核X-CRC。内核MBPLS是一个非线性回归模型,它可以根据相机的数量进行扩展,并允许包含额外的标记信息(例如,属性)。不同的是,Kernel X-CRC是一个非线性的多任务匹配函数,可以与子空间学习方法联合使用来提高匹配率。我们在四个数据集(VIPeR、PRID450S、WARD和Market-1501)中对这两种方法进行了广泛的实验评估。实验结果表明,内核MBPLS和内核X-CRC优于文献中的方法。此外,我们证明了内核X-CRC可以成功地应用于大规模和多相机数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信