Deep Underwater Monocular Depth Estimation with Single-Beam Echosounder

Haowen Liu, Monika Roznere, Alberto Quattrini Li
{"title":"Deep Underwater Monocular Depth Estimation with Single-Beam Echosounder","authors":"Haowen Liu, Monika Roznere, Alberto Quattrini Li","doi":"10.1109/ICRA48891.2023.10161439","DOIUrl":null,"url":null,"abstract":"Underwater depth estimation is essential for safe Autonomous Underwater Vehicles (AUV) navigation. While there has been recent advances in out-of-water monocular depth estimation, it is difficult to apply these methods to the underwater domain due to the lack of well-established datasets with labelled ground truths. In this paper, we propose a novel method for self-supervised underwater monocular depth estimation by leveraging a low-cost single-beam echosounder (SBES). We also present a synthetic dataset for underwater depth estimation to facilitate visual learning research in the underwater domain, available at https://github.com/hdacnw/sbes-depth. We evaluated our method on the proposed dataset with results outperforming previous methods and tested our method in a dataset we collected with an inexpensive AUV. We further investigated the use of SBES as an additional component in our self-supervised method for up-to-scale depth estimation providing insights on next research directions.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater depth estimation is essential for safe Autonomous Underwater Vehicles (AUV) navigation. While there has been recent advances in out-of-water monocular depth estimation, it is difficult to apply these methods to the underwater domain due to the lack of well-established datasets with labelled ground truths. In this paper, we propose a novel method for self-supervised underwater monocular depth estimation by leveraging a low-cost single-beam echosounder (SBES). We also present a synthetic dataset for underwater depth estimation to facilitate visual learning research in the underwater domain, available at https://github.com/hdacnw/sbes-depth. We evaluated our method on the proposed dataset with results outperforming previous methods and tested our method in a dataset we collected with an inexpensive AUV. We further investigated the use of SBES as an additional component in our self-supervised method for up-to-scale depth estimation providing insights on next research directions.
基于单波束测深仪的深海单目深度估计
水下深度估计是自主水下航行器(AUV)安全导航的关键。虽然最近在水外单目深度估计方面取得了进展,但由于缺乏具有标记地面事实的成熟数据集,很难将这些方法应用于水下领域。本文提出了一种利用低成本单波束测深仪(SBES)进行水下自监督单目深度估计的新方法。我们还提出了一个用于水下深度估计的合成数据集,以促进水下领域的视觉学习研究,可在https://github.com/hdacnw/sbes-depth上获得。我们在提议的数据集上评估了我们的方法,结果优于以前的方法,并在我们用廉价的AUV收集的数据集上测试了我们的方法。我们进一步研究了SBES作为自监督深度估计方法的附加组件的使用,为下一个研究方向提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信