Linear regression under maximum a posteriori criterion with Markov random field prior

Xintian Wu, Yonghong Yan
{"title":"Linear regression under maximum a posteriori criterion with Markov random field prior","authors":"Xintian Wu, Yonghong Yan","doi":"10.1109/ICASSP.2000.859130","DOIUrl":null,"url":null,"abstract":"Speaker adaptation using linear transformations under the maximum a posteriori (MAP) criterion has been studied in this paper. The purpose is to improve the matrix estimation in the widely used maximum likelihood linear regression (MLLR) adaptation, which might generate poorly structured transform matrices when adaptation data are sparse. Unlike traditional MAP based adaptations, many known prior distributions of HMM parameters, such as normal-Washart priors, do not have a close form solution in the transform estimation. In Markov random field linear regression (MRFLR), the prior distribution of HMM parameters is modeled by Markov random field, which leads to a close form solution of estimating the linear transforms. Experimental results show that MRFLR outperforms MLLR when adaptation data are sparse, and converges to the MLLR performances when more adaptation data are available.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.859130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Speaker adaptation using linear transformations under the maximum a posteriori (MAP) criterion has been studied in this paper. The purpose is to improve the matrix estimation in the widely used maximum likelihood linear regression (MLLR) adaptation, which might generate poorly structured transform matrices when adaptation data are sparse. Unlike traditional MAP based adaptations, many known prior distributions of HMM parameters, such as normal-Washart priors, do not have a close form solution in the transform estimation. In Markov random field linear regression (MRFLR), the prior distribution of HMM parameters is modeled by Markov random field, which leads to a close form solution of estimating the linear transforms. Experimental results show that MRFLR outperforms MLLR when adaptation data are sparse, and converges to the MLLR performances when more adaptation data are available.
具有马尔可夫随机场先验的最大后验条件下的线性回归
本文研究了在最大后验准则下利用线性变换的说话人自适应问题。为了改进广泛应用的极大似然线性回归(MLLR)自适应中矩阵估计的问题,当自适应数据稀疏时,矩阵估计可能产生结构不良的变换矩阵。与传统的基于MAP的自适应不同,许多已知的HMM参数的先验分布,如normal-Washart先验,在变换估计中没有接近形式的解。在马尔可夫随机场线性回归(MRFLR)中,利用马尔可夫随机场对HMM参数的先验分布进行建模,从而得到线性变换估计的近似解。实验结果表明,当自适应数据稀疏时,MRFLR优于MLLR;当自适应数据较多时,MRFLR收敛于MLLR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信