Axiomatic characterization of transit functions of weak hierarchies

M. Changat, Prasanth G. Narasimha-Shenoi, P. Stadler
{"title":"Axiomatic characterization of transit functions of weak hierarchies","authors":"M. Changat, Prasanth G. Narasimha-Shenoi, P. Stadler","doi":"10.26493/2590-9770.1260.989","DOIUrl":null,"url":null,"abstract":"Transit functions provide a unified approach to study notions of intervals, convexities, and betweenness. Recently, their scope has been extended to certain set systems associated with clustering. We characterize here the class of set systems that correspond to k-ary monotonic transit functions. Convexities form a subclass and are characterized in terms of transit functions by two additional axioms. We then focus on axiom systems associated with weak hierarchies as well as other generalizations of hierarchical set systems.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1260.989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Transit functions provide a unified approach to study notions of intervals, convexities, and betweenness. Recently, their scope has been extended to certain set systems associated with clustering. We characterize here the class of set systems that correspond to k-ary monotonic transit functions. Convexities form a subclass and are characterized in terms of transit functions by two additional axioms. We then focus on axiom systems associated with weak hierarchies as well as other generalizations of hierarchical set systems.
弱层次传递函数的公理化表征
传递函数提供了一种统一的方法来研究间隔、凸性和间性的概念。最近,它们的范围已扩展到与聚类相关的某些集合系统。本文刻画了对应于k元单调传递函数的一类集合系统。凸形成了一个子类,并通过两个附加公理用传递函数表示。然后我们关注与弱层次相关的公理系统以及层次集合系统的其他推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信