IPR-GAN: Identity Preserving Representation GAN for Multi-view Face Synthesis and Recognition

Yan Wan, Lingwei Shen, L. Yao
{"title":"IPR-GAN: Identity Preserving Representation GAN for Multi-view Face Synthesis and Recognition","authors":"Yan Wan, Lingwei Shen, L. Yao","doi":"10.1109/ICECE54449.2021.9674555","DOIUrl":null,"url":null,"abstract":"Photo-realistic and identity preserving multi-view synthesis from a single face image is a challenging and essential problem. The common challenges faced in multi-view face synthesis are that the serious appearance distortion suffering from face synthesis and the generated face images may keep “incomplete” identity information due to a single-pathway encoder-decoder network. This paper proposes Identity Preserving Representation Generative Adversarial Network (IPR-GAN) for photo-realistic multi-view face synthesis. IPR-GAN combats the challenging synthesis problems with a recognizing while generating framework and reserves the postural invariance identity data for downstream tasks like face recognition and pose estimation. Exhaustive experiments substantiate that the proposed method not only represents the improvement of multi-view face synthesis on visual realism, but also preserves identity information for face recognition.","PeriodicalId":166178,"journal":{"name":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE54449.2021.9674555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photo-realistic and identity preserving multi-view synthesis from a single face image is a challenging and essential problem. The common challenges faced in multi-view face synthesis are that the serious appearance distortion suffering from face synthesis and the generated face images may keep “incomplete” identity information due to a single-pathway encoder-decoder network. This paper proposes Identity Preserving Representation Generative Adversarial Network (IPR-GAN) for photo-realistic multi-view face synthesis. IPR-GAN combats the challenging synthesis problems with a recognizing while generating framework and reserves the postural invariance identity data for downstream tasks like face recognition and pose estimation. Exhaustive experiments substantiate that the proposed method not only represents the improvement of multi-view face synthesis on visual realism, but also preserves identity information for face recognition.
基于身份保持表示的多视图人脸合成与识别GAN
单幅人脸图像的多视点合成是一个具有挑战性和本质的问题。多视图人脸合成面临的共同挑战是人脸合成造成的严重的外观失真,以及由于单通道编码器-解码器网络,生成的人脸图像可能保留“不完整”的身份信息。本文提出了一种用于真实感多视图人脸合成的身份保持表示生成对抗网络(IPR-GAN)。知识产权gan在生成框架的同时通过识别来解决具有挑战性的合成问题,并为下游任务(如人脸识别和姿态估计)保留姿势不变性身份数据。详尽的实验证明,该方法不仅代表了多视图人脸合成在视觉真实感上的改进,而且保留了人脸识别的身份信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信