{"title":"Comparison of syllable-based and phoneme-based DNN-HMM in Japanese speech recognition","authors":"Hiroshi Seki, Kazumasa Yamamoto, S. Nakagawa","doi":"10.1109/ICAICTA.2014.7005949","DOIUrl":null,"url":null,"abstract":"Japanese is syllabic language. Additionally we have studied syllable-based GMM-HMM for Japanese speech recognition. In this paper, we investigate the differences of recognition accuracy using phoneme/syllable-based GMM-HMM and DNN (Deep Neural Network)-HMM. First, we present a comparison of syllable-based and phoneme-based DNN-HMM. Second, we train the tied state left-context dependent syllable DNN-HMM, and compare these three types of modeling method. In the experiment, we obtained a 5% relative gain for WER using left-context syllable DNN-HMM in comparison with a left-context syllable GMM-HMM, and an 11% relative gain for WER using triphone DNN-HMM in comparison with a syllable-based DNN-HMM. Finally, we got results that modeling left-context phoneme has not worked and context independent syllable-based DNN-HMM got the best performance in the experiments, when applied to the ASJ+JNAS corpus, which consists of about 70 hours.","PeriodicalId":173600,"journal":{"name":"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2014.7005949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Japanese is syllabic language. Additionally we have studied syllable-based GMM-HMM for Japanese speech recognition. In this paper, we investigate the differences of recognition accuracy using phoneme/syllable-based GMM-HMM and DNN (Deep Neural Network)-HMM. First, we present a comparison of syllable-based and phoneme-based DNN-HMM. Second, we train the tied state left-context dependent syllable DNN-HMM, and compare these three types of modeling method. In the experiment, we obtained a 5% relative gain for WER using left-context syllable DNN-HMM in comparison with a left-context syllable GMM-HMM, and an 11% relative gain for WER using triphone DNN-HMM in comparison with a syllable-based DNN-HMM. Finally, we got results that modeling left-context phoneme has not worked and context independent syllable-based DNN-HMM got the best performance in the experiments, when applied to the ASJ+JNAS corpus, which consists of about 70 hours.