Estimation of Gait Relative Attribute Distributions using a Differentiable Trade-off Model of Optimal and Uniform Transports

Yasushi Makihara, Yuta Hayashi, Allam Shehata, D. Muramatsu, Y. Yagi
{"title":"Estimation of Gait Relative Attribute Distributions using a Differentiable Trade-off Model of Optimal and Uniform Transports","authors":"Yasushi Makihara, Yuta Hayashi, Allam Shehata, D. Muramatsu, Y. Yagi","doi":"10.1109/IJCB52358.2021.9484362","DOIUrl":null,"url":null,"abstract":"This paper describes a method for estimating gait relative attribute distributions. Existing datasets for gait relative attributes have only three-grade annotations, which cannot be represented in the form of distributions. Thus, we first create a dataset with seven-grade annotations for five gait relative attributes (i.e., beautiful, graceful, cheerful, imposing, and relaxed). Second, we design a deep neural network to handle gait relative attribute distributions. Although the ground-truth (i.e., annotation) is given in a relative (or pairwise) manner with some degree of uncertainty (i.e., inconsistency among multiple annotators), it is desirable for the system to output an absolute attribute distribution for each gait input. Therefore, we develop a model that converts a pair of absolute attribute distributions into a relative attribute distribution. More specifically, we formulate the conversion as a transportation process from one absolute attribute distribution to the other, then derive a differentiable model that determines the trade-off between optimal transport and uniform transport. Finally, we learn the network parameters by minimizing the dissimilarity between the estimated and ground-truth distributions through the Kullback–Leibler divergence and the expectation dissimilarity. Experimental results show that the proposed method successfully estimates both absolute and relative attribute distributions.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes a method for estimating gait relative attribute distributions. Existing datasets for gait relative attributes have only three-grade annotations, which cannot be represented in the form of distributions. Thus, we first create a dataset with seven-grade annotations for five gait relative attributes (i.e., beautiful, graceful, cheerful, imposing, and relaxed). Second, we design a deep neural network to handle gait relative attribute distributions. Although the ground-truth (i.e., annotation) is given in a relative (or pairwise) manner with some degree of uncertainty (i.e., inconsistency among multiple annotators), it is desirable for the system to output an absolute attribute distribution for each gait input. Therefore, we develop a model that converts a pair of absolute attribute distributions into a relative attribute distribution. More specifically, we formulate the conversion as a transportation process from one absolute attribute distribution to the other, then derive a differentiable model that determines the trade-off between optimal transport and uniform transport. Finally, we learn the network parameters by minimizing the dissimilarity between the estimated and ground-truth distributions through the Kullback–Leibler divergence and the expectation dissimilarity. Experimental results show that the proposed method successfully estimates both absolute and relative attribute distributions.
基于最优和均匀运输的可微权衡模型的步态相对属性分布估计
本文描述了一种步态相对属性分布估计方法。现有的步态相关属性数据集只有三级标注,无法用分布的形式表示。因此,我们首先创建一个具有五个步态相关属性(即美丽、优雅、愉快、气势和放松)的七级注释的数据集。其次,设计深度神经网络处理步态相关属性分布。虽然基础真值(即注释)是以相对(或成对)方式给出的,并且具有一定程度的不确定性(即多个注释器之间不一致),但系统希望为每个步态输入输出绝对属性分布。因此,我们开发了一个将一对绝对属性分布转换为相对属性分布的模型。更具体地说,我们将转换表述为从一种绝对属性分布到另一种绝对属性分布的运输过程,然后推导出确定最佳运输和均匀运输之间权衡的可微模型。最后,我们通过Kullback-Leibler散度和期望不相似度最小化估计分布和真实分布之间的不相似度来学习网络参数。实验结果表明,该方法能够成功地估计出绝对属性分布和相对属性分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信