{"title":"Adaptive IoT Service Configuration Optimization in Edge Networks","authors":"Mengyu Sun, Zhangbing Zhou, Walid Gaaloul","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484465","DOIUrl":null,"url":null,"abstract":"The collaboration of Internet of Things (IoT) devices promotes the computation at the network edge to satisfy latency-sensitive requests. The functionalities provided by IoT devices are encapsulated as IoT services, and the satisfaction of requests is reduced to the composition of services. Due to the hard-to-prediction of forthcoming requests, an adaptive service configuration is essential, when latency constraints are satisfied by composed services. This problem is formulated as a continuous time Markov decision process model constructed with updating system states, taking actions and assessing rewards constantly. A temporal-difference learning approach is developed to optimize the configuration, while taking long-term service latency and energy efficiency into consideration. Experimental results show that our approach outperforms the state-of-art’s techniques for achieving close-to-optimal service configurations.","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The collaboration of Internet of Things (IoT) devices promotes the computation at the network edge to satisfy latency-sensitive requests. The functionalities provided by IoT devices are encapsulated as IoT services, and the satisfaction of requests is reduced to the composition of services. Due to the hard-to-prediction of forthcoming requests, an adaptive service configuration is essential, when latency constraints are satisfied by composed services. This problem is formulated as a continuous time Markov decision process model constructed with updating system states, taking actions and assessing rewards constantly. A temporal-difference learning approach is developed to optimize the configuration, while taking long-term service latency and energy efficiency into consideration. Experimental results show that our approach outperforms the state-of-art’s techniques for achieving close-to-optimal service configurations.