Efficient edge detection method for anatomic feature extraction of neuro-sensory tissue image based on optical coherence tomography

Yeong-Mun Cha, Jae‐Ho Han
{"title":"Efficient edge detection method for anatomic feature extraction of neuro-sensory tissue image based on optical coherence tomography","authors":"Yeong-Mun Cha, Jae‐Ho Han","doi":"10.1109/IWW-BCI.2013.6506632","DOIUrl":null,"url":null,"abstract":"In this work, we propose a reliable and detailed edge detection method customized on characteristics of optical coherence tomography images for stable feature extraction. Using a local window holding many pixels for tracking structural tendencies, edges are detected on reliably limited areas in reduced noise effect. For detailed pixel separation between structures, the edge detection is also achieved through clustering based on Gaussian mixture model. As results, the detected edges showed less than 3-μm of average distant differences compared to edges on manually recognized images. We believe this feature extraction method will provide improved quantitative analyses in wide OCT research areas.","PeriodicalId":129758,"journal":{"name":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","volume":"39 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2013.6506632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, we propose a reliable and detailed edge detection method customized on characteristics of optical coherence tomography images for stable feature extraction. Using a local window holding many pixels for tracking structural tendencies, edges are detected on reliably limited areas in reduced noise effect. For detailed pixel separation between structures, the edge detection is also achieved through clustering based on Gaussian mixture model. As results, the detected edges showed less than 3-μm of average distant differences compared to edges on manually recognized images. We believe this feature extraction method will provide improved quantitative analyses in wide OCT research areas.
基于光学相干断层成像的神经感觉组织图像解剖特征提取的高效边缘检测方法
在这项工作中,我们提出了一种可靠的、详细的边缘检测方法,用于光学相干断层扫描图像的稳定特征提取。利用包含多个像素的局部窗口来跟踪结构趋势,在降低噪声的情况下,在可靠的有限区域检测边缘。对于结构之间的精细像素分离,也通过基于高斯混合模型的聚类实现边缘检测。结果表明,检测到的边缘与人工识别图像的平均距离差小于3 μm。我们相信这种特征提取方法将为广泛的OCT研究领域提供改进的定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信