Fake News Detection on Social Media: A Systematic Survey

Mohamed K. Elhadad, K. F. Li, F. Gebali
{"title":"Fake News Detection on Social Media: A Systematic Survey","authors":"Mohamed K. Elhadad, K. F. Li, F. Gebali","doi":"10.1109/PACRIM47961.2019.8985062","DOIUrl":null,"url":null,"abstract":"These days there are instabilities in many societies in the world, either because of political, economic, and other societal issues. The advance in mobile technology has enabled social media to play a vital role in organizing activities in favour or against certain parties or countries. Many researchers see the need to develop automated systems that are capable of detecting and tracking fake news on social media. In this paper, we introduce a systematic survey on the process of fake news detection on social media. The types of data and the categories of features used in the detection model, as well as benchmark datasets are discussed.","PeriodicalId":152556,"journal":{"name":"2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM47961.2019.8985062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

These days there are instabilities in many societies in the world, either because of political, economic, and other societal issues. The advance in mobile technology has enabled social media to play a vital role in organizing activities in favour or against certain parties or countries. Many researchers see the need to develop automated systems that are capable of detecting and tracking fake news on social media. In this paper, we introduce a systematic survey on the process of fake news detection on social media. The types of data and the categories of features used in the detection model, as well as benchmark datasets are discussed.
社交媒体假新闻检测的系统研究
如今,世界上许多社会都存在不稳定因素,原因可能是政治、经济或其他社会问题。移动技术的进步使社交媒体在组织支持或反对某些政党或国家的活动中发挥了至关重要的作用。许多研究人员认为,有必要开发能够检测和跟踪社交媒体上假新闻的自动化系统。在本文中,我们对社交媒体上的假新闻检测过程进行了系统调查。讨论了检测模型中使用的数据类型和特征类别,以及基准数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信