Application of K-means Algorithm Based on Ant Clustering Algorithm in Macroscopic Planning of Highway Transportation Hub

Yan Meng, Xiyu Liu
{"title":"Application of K-means Algorithm Based on Ant Clustering Algorithm in Macroscopic Planning of Highway Transportation Hub","authors":"Yan Meng, Xiyu Liu","doi":"10.1109/ISITAE.2007.4409331","DOIUrl":null,"url":null,"abstract":"Development of highway transportation promotes sustainable and rapid development in economy of our country effectively. But construction of highway and transportation hub shows the nature of unbalance. So highway main hub cities must be clustered using cluster analysis, and then divided level in order to functional analyze. K-means algorithm is the most widely used algorithm in clustering analysis, which clustering numbers and initial clustering centers are uncertain. This paper proposes application of K-means algorithm in macroscopic planning of highway transportation hub based on ant clustering algorithm. The experimental results show this algorithm can more effectively solved clustering problem than K-means algorithm and ant clustering algorithm.","PeriodicalId":332503,"journal":{"name":"2007 First IEEE International Symposium on Information Technologies and Applications in Education","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 First IEEE International Symposium on Information Technologies and Applications in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITAE.2007.4409331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Development of highway transportation promotes sustainable and rapid development in economy of our country effectively. But construction of highway and transportation hub shows the nature of unbalance. So highway main hub cities must be clustered using cluster analysis, and then divided level in order to functional analyze. K-means algorithm is the most widely used algorithm in clustering analysis, which clustering numbers and initial clustering centers are uncertain. This paper proposes application of K-means algorithm in macroscopic planning of highway transportation hub based on ant clustering algorithm. The experimental results show this algorithm can more effectively solved clustering problem than K-means algorithm and ant clustering algorithm.
基于蚂蚁聚类算法的K-means算法在公路交通枢纽宏观规划中的应用
公路交通的发展有效地促进了我国经济的持续快速发展。但公路和交通枢纽建设呈现出不平衡的本质。因此,必须采用聚类分析方法对高速公路主要枢纽城市进行聚类,然后进行层次划分,以便进行功能分析。K-means算法是聚类分析中应用最广泛的算法,它的聚类数和初始聚类中心都是不确定的。本文提出了基于蚁群算法的K-means算法在公路交通枢纽宏观规划中的应用。实验结果表明,该算法比k均值算法和蚂蚁聚类算法能更有效地解决聚类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信