Fumiya Shono, Noriyuki Mouri, T. Higuchi, O. Fuchiwaki
{"title":"Simulation of 3-axis state feedback controller with bang-bang control for positioning mechanism driven by 6 piezoelectric actuators","authors":"Fumiya Shono, Noriyuki Mouri, T. Higuchi, O. Fuchiwaki","doi":"10.1109/AIM.2016.7576988","DOIUrl":null,"url":null,"abstract":"In this paper, we report the simulation result of a precise 3-axial servo controller for a positioning mechanism in an inchworm mobile mechanism. Also, we describe the design of bang-bang controller for θ-axis that is required for developing 3-axial controller. The inchworm mobile mechanism is composed of 6 piezoelectric actuators (PAs) and a pair of electromagnets (EMs). If one EM is fixed to a ferromagnetic floor, then another EM can position the X, Y, and θ axes by 6 PAs. In a previous study, we have developed 3-axial proportional-integral-derivative (PID) controls with a 50 nm resolution for the mechanism with 4 linear encoders to measure the 3DoF motion of the free magnet precisely However, we concluded that we require over 100 ms of settling time because of mutual coupling effects among the X, Y, and θ axes when using the PID controller. To be robust against the disturbance and also reduce settling time, we developed a new servo controller in this study. To achieve sufficient working efficiency, we aimed at establishing of 3-axial servo control on the nanometer scale that can realize a ±0.5 μm positioning repeatability, and less than 10 ms of settling time over a 50 μm×50 μm positioning range.","PeriodicalId":154457,"journal":{"name":"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2016.7576988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we report the simulation result of a precise 3-axial servo controller for a positioning mechanism in an inchworm mobile mechanism. Also, we describe the design of bang-bang controller for θ-axis that is required for developing 3-axial controller. The inchworm mobile mechanism is composed of 6 piezoelectric actuators (PAs) and a pair of electromagnets (EMs). If one EM is fixed to a ferromagnetic floor, then another EM can position the X, Y, and θ axes by 6 PAs. In a previous study, we have developed 3-axial proportional-integral-derivative (PID) controls with a 50 nm resolution for the mechanism with 4 linear encoders to measure the 3DoF motion of the free magnet precisely However, we concluded that we require over 100 ms of settling time because of mutual coupling effects among the X, Y, and θ axes when using the PID controller. To be robust against the disturbance and also reduce settling time, we developed a new servo controller in this study. To achieve sufficient working efficiency, we aimed at establishing of 3-axial servo control on the nanometer scale that can realize a ±0.5 μm positioning repeatability, and less than 10 ms of settling time over a 50 μm×50 μm positioning range.