EFFECT OF ROTATIONAL SPEED AND DWELL TIME ON PHYSICAL AND MECHANICAL PROPERTIES OF FRICTION STIR SPOT WELDING ALUMINIUM 1100 WITH ZN POWDER INTERLAYER ADDITION

Aditya Noor, N. Muhayat, Triyono
{"title":"EFFECT OF ROTATIONAL SPEED AND DWELL TIME ON PHYSICAL AND MECHANICAL PROPERTIES OF FRICTION STIR SPOT WELDING ALUMINIUM 1100 WITH ZN POWDER INTERLAYER ADDITION","authors":"Aditya Noor, N. Muhayat, Triyono","doi":"10.20961/MEKANIKA.V18I1.35039","DOIUrl":null,"url":null,"abstract":"Friction stir spot welding (FSSW) is one of the development of solid state welding to joint lightweight materials such as aluminium. In the automotive industry, lightweight materials are needed in the structure of vehicle construction to improve efficiency in vehicles. This research aims to find out how the effect of rotational speed and dwell time on physical and mechanical properties on the weld joint of aluminium 1100 with Zn interlayer addition. Variations used in rotational speed 1000, 1250, 1600 rpm and dwell time 6, 7, 8 s. Pullout fracture occur in tensile tests that are getting bigger with increasing rotational speed and dwell time. The results of SEM and EDS observations showed that the metallurgical bonded zone increased and kept the hook defect away. The spread of Zn in the stir zone area causes the formation of solid Al-Zn phase in a solid solution. The hook defect filled with Zn can minimize cracks that occur, so increased the tensile shear load. The highest tensile shear load value of FSSW AA1100 without Zn interlayer is 3.61 kN, while the FSSW AA1100 with Zn interlayer addition is 4.34 kN.","PeriodicalId":356258,"journal":{"name":"Mekanika: Majalah Ilmiah Mekanika","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mekanika: Majalah Ilmiah Mekanika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/MEKANIKA.V18I1.35039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Friction stir spot welding (FSSW) is one of the development of solid state welding to joint lightweight materials such as aluminium. In the automotive industry, lightweight materials are needed in the structure of vehicle construction to improve efficiency in vehicles. This research aims to find out how the effect of rotational speed and dwell time on physical and mechanical properties on the weld joint of aluminium 1100 with Zn interlayer addition. Variations used in rotational speed 1000, 1250, 1600 rpm and dwell time 6, 7, 8 s. Pullout fracture occur in tensile tests that are getting bigger with increasing rotational speed and dwell time. The results of SEM and EDS observations showed that the metallurgical bonded zone increased and kept the hook defect away. The spread of Zn in the stir zone area causes the formation of solid Al-Zn phase in a solid solution. The hook defect filled with Zn can minimize cracks that occur, so increased the tensile shear load. The highest tensile shear load value of FSSW AA1100 without Zn interlayer is 3.61 kN, while the FSSW AA1100 with Zn interlayer addition is 4.34 kN.
转速和停留时间对层间添加锌粉铝1100搅拌摩擦点焊物理力学性能的影响
搅拌摩擦点焊(FSSW)是连接铝等轻量化材料的固态焊接技术的发展之一。在汽车工业中,为了提高车辆的效率,需要在车辆结构中使用轻量化材料。本研究旨在了解转速和停留时间对添加Zn中间层的1100铝合金焊接接头物理力学性能的影响。用于转速1000,1250,1600 rpm和停留时间6,7,8 s的变化。随着转速和停留时间的增加,拉伸试验中出现的拉出断裂越来越大。扫描电镜和能谱分析结果表明,合金的冶金结合区增大,使钩状缺陷消失。锌在搅拌区扩散导致固相Al-Zn在固溶体中形成。用锌填充钩形缺陷可以减少裂纹的产生,从而增加了拉伸剪切载荷。未添加Zn中间层的FSSW AA1100最高拉伸剪切荷载值为3.61 kN,添加Zn中间层的FSSW AA1100最高拉伸剪切荷载值为4.34 kN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信