Data Mining Using Multi-Valued Logic Minimization

Tsutomu Sasao
{"title":"Data Mining Using Multi-Valued Logic Minimization","authors":"Tsutomu Sasao","doi":"10.1109/ISMVL57333.2023.00030","DOIUrl":null,"url":null,"abstract":"In a partially defined classification function, each input combination represents features of an example, while the output represents the class of the example. Each variable may have different radix. In this paper, we show a method to minimize the number of variables. Combined with a multiplevalued logic minimizer, data sets of examples are represented by a compact set of rules. Experimental results using University of California Irvine (UCI) benchmark functions show the effectiveness of the approach, especially for imbalanced data sets. The results are compared with J48 and JRIP. This approach produces explainable 100% correct rules, which are promising for bio-medical applications.","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a partially defined classification function, each input combination represents features of an example, while the output represents the class of the example. Each variable may have different radix. In this paper, we show a method to minimize the number of variables. Combined with a multiplevalued logic minimizer, data sets of examples are represented by a compact set of rules. Experimental results using University of California Irvine (UCI) benchmark functions show the effectiveness of the approach, especially for imbalanced data sets. The results are compared with J48 and JRIP. This approach produces explainable 100% correct rules, which are promising for bio-medical applications.
基于多值逻辑最小化的数据挖掘
在部分定义的分类函数中,每个输入组合表示一个示例的特征,而输出表示该示例的类。每个变量可以有不同的基数。本文给出了一种最小化变量数的方法。结合多重求值逻辑最小化器,示例的数据集由一组紧凑的规则表示。使用加州大学欧文分校(UCI)基准函数的实验结果表明了该方法的有效性,特别是对于不平衡数据集。结果与J48和JRIP进行了比较。这种方法产生可解释的100%正确的规则,这对生物医学应用很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信