Deep learning feature representation for electrocardiogram identification

Xiafei Lei, Yue Zhang, Zongqing Lu
{"title":"Deep learning feature representation for electrocardiogram identification","authors":"Xiafei Lei, Yue Zhang, Zongqing Lu","doi":"10.1109/ICDSP.2016.7868505","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient and powerful method of electrocardiogram (ECG) identification. Specially, a set of discriminative feature representations can be learned from one-dimensional ECG signals with an arbitrary origin through deep learning, referred to as deep fusion features. Non-linear classifier is adopted to classify test ECG signals. A final simple voting step can further enhance performance. Based on the above steps, our method can reduce the dependence of algorithm accuracy on the origin and length of the ECG signal. Unlike traditional methods, detecting fiducial points and combining features are not required. Moreover, test process can use parallel processing to improve efficiency. The method achieves 99.33% accuracy for a publicly available database. The experiments demonstrate that our method is efficient and powerful in real applications.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents an efficient and powerful method of electrocardiogram (ECG) identification. Specially, a set of discriminative feature representations can be learned from one-dimensional ECG signals with an arbitrary origin through deep learning, referred to as deep fusion features. Non-linear classifier is adopted to classify test ECG signals. A final simple voting step can further enhance performance. Based on the above steps, our method can reduce the dependence of algorithm accuracy on the origin and length of the ECG signal. Unlike traditional methods, detecting fiducial points and combining features are not required. Moreover, test process can use parallel processing to improve efficiency. The method achieves 99.33% accuracy for a publicly available database. The experiments demonstrate that our method is efficient and powerful in real applications.
用于心电图识别的深度学习特征表示
提出了一种高效、有效的心电识别方法。特别地,通过深度学习可以从任意来源的一维心电信号中学习到一组判别特征表示,称为深度融合特征。采用非线性分类器对试验心电信号进行分类。最后一个简单的投票步骤可以进一步提高性能。基于以上步骤,我们的方法可以降低算法精度对心电信号的来源和长度的依赖。与传统方法不同,该方法不需要检测基准点和组合特征。此外,测试过程可以采用并行处理来提高效率。对于公开可用的数据库,该方法的准确率达到99.33%。实验表明,该方法在实际应用中是有效和强大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信