J. Ortiz-Zacarias, Yadhira S. Valenzuela-Lino, Joel Asto-Evangelista, Deyby Huamanchahua
{"title":"Kinematic Position and Orientation Analysis of a 4 DoF Orthosis for Knee and Ankle Rehabilitation","authors":"J. Ortiz-Zacarias, Yadhira S. Valenzuela-Lino, Joel Asto-Evangelista, Deyby Huamanchahua","doi":"10.1109/ICRAE53653.2021.9657817","DOIUrl":null,"url":null,"abstract":"Nowadays, lower-limb orthoses facilitate various locomotion tasks for rehabilitation therapies that are repetitive and constant. Therefore, this research presents the kinematic analysis of a 4 DoF orthosis for knee and ankle rehabilitation. To obtain the kinematics of the axes, an analysis was performed from the biomechanical point of view, consequently, the Denavit-Hartenberg (D-H) method was used, which consisted of finding a homogeneous transformation matrix, followed by the orientation, position, and Euler angles; furthermore, the open-source software Jupiter (Phyton) was used as a testing tool. The homogeneous transformation matrix was obtained as a result and the simplification of the direct kinematic matrices was achieved. Finally, the direct kinematic analysis for a 4 DoF orthosis was established using the method of position (D-H), orientation, and Euler angles, which were very useful for the research.","PeriodicalId":338398,"journal":{"name":"2021 6th International Conference on Robotics and Automation Engineering (ICRAE)","volume":"10 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Robotics and Automation Engineering (ICRAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAE53653.2021.9657817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Nowadays, lower-limb orthoses facilitate various locomotion tasks for rehabilitation therapies that are repetitive and constant. Therefore, this research presents the kinematic analysis of a 4 DoF orthosis for knee and ankle rehabilitation. To obtain the kinematics of the axes, an analysis was performed from the biomechanical point of view, consequently, the Denavit-Hartenberg (D-H) method was used, which consisted of finding a homogeneous transformation matrix, followed by the orientation, position, and Euler angles; furthermore, the open-source software Jupiter (Phyton) was used as a testing tool. The homogeneous transformation matrix was obtained as a result and the simplification of the direct kinematic matrices was achieved. Finally, the direct kinematic analysis for a 4 DoF orthosis was established using the method of position (D-H), orientation, and Euler angles, which were very useful for the research.