Ahmad Nikoobakht, J. Aghaei, M. Lotfi, C. João P. S., G. Osório, M. Shafie‐khah
{"title":"Flexible Co-Operation of TCSC and Corrective Topology Control under Wind Uncertainty: An Interval-based Robust Approach","authors":"Ahmad Nikoobakht, J. Aghaei, M. Lotfi, C. João P. S., G. Osório, M. Shafie‐khah","doi":"10.1109/PTC.2019.8810889","DOIUrl":null,"url":null,"abstract":"This paper presents an AC optimal power flow (AC-OPF) model including flexible resources (FRs) to handle uncertain wind power generation (WPG). The FRs considered are thermal units with up/down re-dispatching capability, corrective topology control (CTC), and thyristor-controlled series capacitors (TCSC). WPG uncertainty has been modeled through a proposed interval-based robust approach, the goal of which is to maximize the variation range of WPG uncertainty in power systems while maintaining an adequate reliability level at a reasonable cost with the aid of FRs. However, utilization of FRs (especially CTC and TCSC devices) is limited due to the difficulty of their incorporation in the AC-OPF. The optimization framework of the full FR-augmented AC-OPF problem is a mixed-integer nonlinear programming (MINLP) in which the solution for large-scale systems is very hard to obtain. To solve this issue, this paper uses a two-stage decomposition algorithm to decompose the MINLP representation into a mixed-integer linear program (MILP) and a nonlinear program (NLP). Finally, the robust AC-OPF model with FRs is implemented and tested on a 6-bus and the IEEE 118-bus test systems to evaluate its efficiency and performance.","PeriodicalId":187144,"journal":{"name":"2019 IEEE Milan PowerTech","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Milan PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2019.8810889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents an AC optimal power flow (AC-OPF) model including flexible resources (FRs) to handle uncertain wind power generation (WPG). The FRs considered are thermal units with up/down re-dispatching capability, corrective topology control (CTC), and thyristor-controlled series capacitors (TCSC). WPG uncertainty has been modeled through a proposed interval-based robust approach, the goal of which is to maximize the variation range of WPG uncertainty in power systems while maintaining an adequate reliability level at a reasonable cost with the aid of FRs. However, utilization of FRs (especially CTC and TCSC devices) is limited due to the difficulty of their incorporation in the AC-OPF. The optimization framework of the full FR-augmented AC-OPF problem is a mixed-integer nonlinear programming (MINLP) in which the solution for large-scale systems is very hard to obtain. To solve this issue, this paper uses a two-stage decomposition algorithm to decompose the MINLP representation into a mixed-integer linear program (MILP) and a nonlinear program (NLP). Finally, the robust AC-OPF model with FRs is implemented and tested on a 6-bus and the IEEE 118-bus test systems to evaluate its efficiency and performance.