Wavelet-based texture segmentation of remotely sensed images

M. Acharyya, M. Kundu
{"title":"Wavelet-based texture segmentation of remotely sensed images","authors":"M. Acharyya, M. Kundu","doi":"10.1109/ICIAP.2001.956987","DOIUrl":null,"url":null,"abstract":"A texture feature extraction scheme based on M-band wavelet packet frames is investigated. The features so extracted are used for segmentation of satellite images which usually have complex and overlapping boundaries. The underlying principle is based on the fact that different image regions exhibit different textures. Since most significant information of a texture often lies in the intermediate frequency bands, the present work employs an overcomplete wavelet decomposition scheme called discrete M-band wavelet packet frame (DM-bWPF), which yields improved segmentation accuracies. Wavelet packets represent a generalization of the method of multiresolution decomposition and comprise all possible combinations of subband tree decomposition. We propose a computationally efficient search procedure to find the optimal basis based on some maximum criterion of textural measures derived from the statistical parameters of each of the subbands, to locate dominant information in each subbands (frequency channels) and decide further decomposition.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.956987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

A texture feature extraction scheme based on M-band wavelet packet frames is investigated. The features so extracted are used for segmentation of satellite images which usually have complex and overlapping boundaries. The underlying principle is based on the fact that different image regions exhibit different textures. Since most significant information of a texture often lies in the intermediate frequency bands, the present work employs an overcomplete wavelet decomposition scheme called discrete M-band wavelet packet frame (DM-bWPF), which yields improved segmentation accuracies. Wavelet packets represent a generalization of the method of multiresolution decomposition and comprise all possible combinations of subband tree decomposition. We propose a computationally efficient search procedure to find the optimal basis based on some maximum criterion of textural measures derived from the statistical parameters of each of the subbands, to locate dominant information in each subbands (frequency channels) and decide further decomposition.
基于小波的遥感图像纹理分割
研究了一种基于m波段小波包帧的纹理特征提取方法。所提取的特征用于对边界复杂、重叠的卫星图像进行分割。其基本原理是基于不同的图像区域呈现不同的纹理这一事实。由于纹理的大部分重要信息通常位于中间频带,因此本文采用了一种称为离散m波段小波包帧(DM-bWPF)的过完备小波分解方案,提高了分割精度。小波包是多分辨率分解方法的一种推广,包含子带树分解的所有可能组合。我们提出了一种计算效率高的搜索程序,基于从每个子带的统计参数中得到的纹理测度的一些最大准则来找到最优基,定位每个子带(频率通道)中的优势信息并决定进一步分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信