High-performance FPGA implementation of equivariant adaptive separation via independence algorithm for Independent Component Analysis

M. Nazemi, Shahin Nazarian, Massoud Pedram
{"title":"High-performance FPGA implementation of equivariant adaptive separation via independence algorithm for Independent Component Analysis","authors":"M. Nazemi, Shahin Nazarian, Massoud Pedram","doi":"10.1109/ASAP.2017.7995255","DOIUrl":null,"url":null,"abstract":"Independent Component Analysis (ICA) is a dimensionality reduction technique that can boost efficiency of machine learning models that deal with probability density functions, e.g. Bayesian neural networks. Algorithms that implement adaptive ICA converge slower than their nonadaptive counterparts, however, they are capable of tracking changes in underlying distributions of input features. This intrinsically slow convergence of adaptive methods combined with existing hardware implementations that operate at very low clock frequencies necessitate fundamental improvements in both algorithm and hardware design. This paper presents an algorithm that allows efficient hardware implementation of ICA. Compared to previous work, our FPGA implementation of adaptive ICA improves clock frequency by at least one order of magnitude and throughput by at least two orders of magnitude. Our proposed algorithm is not limited to ICA and can be used in various machine learning problems that use stochastic gradient descent optimization.","PeriodicalId":405953,"journal":{"name":"2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2017.7995255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Independent Component Analysis (ICA) is a dimensionality reduction technique that can boost efficiency of machine learning models that deal with probability density functions, e.g. Bayesian neural networks. Algorithms that implement adaptive ICA converge slower than their nonadaptive counterparts, however, they are capable of tracking changes in underlying distributions of input features. This intrinsically slow convergence of adaptive methods combined with existing hardware implementations that operate at very low clock frequencies necessitate fundamental improvements in both algorithm and hardware design. This paper presents an algorithm that allows efficient hardware implementation of ICA. Compared to previous work, our FPGA implementation of adaptive ICA improves clock frequency by at least one order of magnitude and throughput by at least two orders of magnitude. Our proposed algorithm is not limited to ICA and can be used in various machine learning problems that use stochastic gradient descent optimization.
基于独立分析算法的等变自适应分离的高性能FPGA实现
独立成分分析(ICA)是一种降维技术,可以提高处理概率密度函数的机器学习模型的效率,例如贝叶斯神经网络。实现自适应ICA的算法收敛速度比非自适应算法慢,然而,它们能够跟踪输入特征底层分布的变化。这种固有的自适应方法的缓慢收敛与在非常低的时钟频率下运行的现有硬件实现相结合,需要在算法和硬件设计方面进行根本性的改进。本文提出了一种有效的ICA硬件实现算法。与以前的工作相比,我们的FPGA实现的自适应ICA将时钟频率提高了至少一个数量级,吞吐量提高了至少两个数量级。我们提出的算法不仅限于ICA,而且可以用于使用随机梯度下降优化的各种机器学习问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信