On the solution of fractional space-time nonlinear differential equations

M. A. Abdou
{"title":"On the solution of fractional space-time nonlinear differential equations","authors":"M. A. Abdou","doi":"10.0000/IJAMC.2013.5.3.582","DOIUrl":null,"url":null,"abstract":"The fractional Riccati equation with  Riemann-Liouville derivatives has been successively used to find the explicit solutions of the space-time of nonlinear fractional partial differential equations.Three  models of special interest with fractional space-time derivative of order $\\alpha$,$0<\\alpha<1$ are considered. The three models are tested to illustrate the pertinent feature of the proposed algorithm.This approach can also be applied to other nonlinear fractional differential equations arising in mathematical physics.","PeriodicalId":173223,"journal":{"name":"International Journal of Applied Mathematics and Computation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.0000/IJAMC.2013.5.3.582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The fractional Riccati equation with  Riemann-Liouville derivatives has been successively used to find the explicit solutions of the space-time of nonlinear fractional partial differential equations.Three  models of special interest with fractional space-time derivative of order $\alpha$,$0<\alpha<1$ are considered. The three models are tested to illustrate the pertinent feature of the proposed algorithm.This approach can also be applied to other nonlinear fractional differential equations arising in mathematical physics.
分数阶时空非线性微分方程的解
利用黎曼-刘维尔导数的分数阶Riccati方程求解非线性分数阶偏微分方程的时空显式解。考虑了三个阶为$\ α $,$0<\ α <1$的分数阶时空导数的特殊兴趣模型。对这三个模型进行了测试,以说明所提出算法的相关特征。这种方法也可以应用于数学物理中出现的其他非线性分数阶微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信