Structure of symmetry of PDE: exploiting partially integrated systems

I. Lisle, Tracy Shih-lung Huang, G. Reid
{"title":"Structure of symmetry of PDE: exploiting partially integrated systems","authors":"I. Lisle, Tracy Shih-lung Huang, G. Reid","doi":"10.1145/2631948.2631962","DOIUrl":null,"url":null,"abstract":"This work is part of a sequence in which we develop and refine algorithms for computer symmetry analysis of differential equations. We show how to exploit partially integrated forms of symmetry defining systems to assist the differential elimination algorithms that uncover structure of the Lie symmetry algebras. We thus incorporate a key advantage of heuristic integration methods, that of exploiting easy integrals of simple (e.g. one term) PDE that frequently occur in such analyses. A single unified method is given that computes structure constants whether the defining system is unsolved, or has been partially or completely integrated.\n We also give a symbolic-numeric algorithm which for the first time can determine the structure of Lie symmetry algebras specified by defining systems that contain floating point coefficients. This algorithm incorporates a numerical version of the Cartan-Kuranishi prolongation projection algorithm from the geometry of differential equations.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work is part of a sequence in which we develop and refine algorithms for computer symmetry analysis of differential equations. We show how to exploit partially integrated forms of symmetry defining systems to assist the differential elimination algorithms that uncover structure of the Lie symmetry algebras. We thus incorporate a key advantage of heuristic integration methods, that of exploiting easy integrals of simple (e.g. one term) PDE that frequently occur in such analyses. A single unified method is given that computes structure constants whether the defining system is unsolved, or has been partially or completely integrated. We also give a symbolic-numeric algorithm which for the first time can determine the structure of Lie symmetry algebras specified by defining systems that contain floating point coefficients. This algorithm incorporates a numerical version of the Cartan-Kuranishi prolongation projection algorithm from the geometry of differential equations.
PDE的对称结构:利用部分集成系统
这项工作是我们开发和完善微分方程的计算机对称分析算法的一系列工作的一部分。我们展示了如何利用部分积分形式的对称定义系统来帮助微分消除算法揭示李对称代数的结构。因此,我们结合了启发式积分方法的一个关键优势,即利用在此类分析中经常出现的简单(例如一项)PDE的容易积分。给出了一种计算结构常数的统一方法,无论定义系统是未解的,还是部分或完全集成的。我们还首次给出了一个符号-数值算法,该算法可以通过定义包含浮点系数的系统来确定李对称代数的结构。该算法结合了来自微分方程几何的Cartan-Kuranishi扩展投影算法的数值版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信