Maximizing Information of Multimodality Brain Image Fusion Using Curvelet Transform with Genetic Algorithm

M. Arif, N. A. Abdullah, Shiva Kumara Phalianakote, N. Ramli, Manzoor Elahi
{"title":"Maximizing Information of Multimodality Brain Image Fusion Using Curvelet Transform with Genetic Algorithm","authors":"M. Arif, N. A. Abdullah, Shiva Kumara Phalianakote, N. Ramli, Manzoor Elahi","doi":"10.1109/CASH.2014.11","DOIUrl":null,"url":null,"abstract":"The existing medical image fusion techniques lack of the ability to produce fused image that can maintain fine details of information content from the source images. In this paper, we introduce curve let transform and Genetic Algorithm (GA). The curve let transform performs better than wavelet transform in preserving visual image content particularly the edges. The use of GA can further refine the features of the fused image, and solve the existing uncertainty and ambiguity in the smooth region of the input image. Our method is beneficial to image fusion techniques whose applications rely on the source information of local images. Our experimental results indicate that our method performs betters than baseline methods in terms of quantitative image fusion performance.","PeriodicalId":131954,"journal":{"name":"2014 International Conference on Computer Assisted System in Health","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computer Assisted System in Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASH.2014.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The existing medical image fusion techniques lack of the ability to produce fused image that can maintain fine details of information content from the source images. In this paper, we introduce curve let transform and Genetic Algorithm (GA). The curve let transform performs better than wavelet transform in preserving visual image content particularly the edges. The use of GA can further refine the features of the fused image, and solve the existing uncertainty and ambiguity in the smooth region of the input image. Our method is beneficial to image fusion techniques whose applications rely on the source information of local images. Our experimental results indicate that our method performs betters than baseline methods in terms of quantitative image fusion performance.
基于遗传曲波变换的多模态脑图像融合信息最大化
现有的医学图像融合技术缺乏产生能够保持源图像信息内容细节的融合图像的能力。本文介绍了曲线let变换和遗传算法。曲线let变换在保留视觉图像内容特别是边缘方面优于小波变换。利用遗传算法可以进一步细化融合图像的特征,解决输入图像光滑区域存在的不确定性和模糊性。该方法对依赖于局部图像源信息的图像融合技术具有一定的借鉴意义。实验结果表明,该方法在定量图像融合性能方面优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信