Robust Laughter Detection for Wearable Wellbeing Sensing

Gerhard Johann Hagerer, N. Cummins, F. Eyben, Björn Schuller
{"title":"Robust Laughter Detection for Wearable Wellbeing Sensing","authors":"Gerhard Johann Hagerer, N. Cummins, F. Eyben, Björn Schuller","doi":"10.1145/3194658.3194693","DOIUrl":null,"url":null,"abstract":"To build a noise-robust online-capable laughter detector for behavioural monitoring on wearables, we incorporate context-sensitive Long Short-Term Memory Deep Neural Networks. We show our solution»s improvements over a laughter detection baseline by integrating intelligent noise-robust voice activity detection (VAD) into the same model. To this end, we add extensive artificially mixed VAD data without any laughter targets to a small laughter training set. The resulting laughter detection enhancements are stable even when frames are dropped, which happen in low resource environments such as wearables. Thus, the outlined model generation potentially improves the detection of vocal cues when the amount of training data is small and robustness and efficiency are required.","PeriodicalId":216658,"journal":{"name":"Proceedings of the 2018 International Conference on Digital Health","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194658.3194693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To build a noise-robust online-capable laughter detector for behavioural monitoring on wearables, we incorporate context-sensitive Long Short-Term Memory Deep Neural Networks. We show our solution»s improvements over a laughter detection baseline by integrating intelligent noise-robust voice activity detection (VAD) into the same model. To this end, we add extensive artificially mixed VAD data without any laughter targets to a small laughter training set. The resulting laughter detection enhancements are stable even when frames are dropped, which happen in low resource environments such as wearables. Thus, the outlined model generation potentially improves the detection of vocal cues when the amount of training data is small and robustness and efficiency are required.
用于可穿戴健康感知的鲁棒笑声检测
为了在可穿戴设备上建立一个噪声鲁强的在线笑声探测器,我们结合了上下文敏感的长短期记忆深度神经网络。我们通过将智能噪声鲁棒语音活动检测(VAD)集成到同一模型中,展示了我们的解决方案在笑声检测基线上的改进。为此,我们将大量人工混合的VAD数据添加到一个小的笑声训练集中,这些数据没有任何笑声目标。由此产生的笑声检测增强功能即使在帧被丢弃时也是稳定的,这种情况发生在可穿戴设备等低资源环境中。因此,当训练数据量较小且需要鲁棒性和效率时,概述的模型生成可能会改善声音线索的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信