{"title":"Image retrieval using local characterization","authors":"C. Schmid, R. Mohr","doi":"10.1109/ICIP.1996.561020","DOIUrl":null,"url":null,"abstract":"The paper presents a general method to retrieve images from large databases using images as queries. The method is based on local characteristics which are robust to the group of similarity transformations in the image. Images can be retrieved even if they are translated, rotated or scaled. Due to the locality of the characterization, images can be retrieved even if only a small part of the image is given as well as in the presence of occlusions. A voting algorithm, following the idea of a Hough transform, and semi local constraints allow us to develop a new method which is robust to noise, to scene clutter and small perspective deformations. Experiments show an efficient recognition for different types of images. The approach has been validated on an image database containing 1020 images, some of them being very similar by structure, texture or shape.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.561020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
The paper presents a general method to retrieve images from large databases using images as queries. The method is based on local characteristics which are robust to the group of similarity transformations in the image. Images can be retrieved even if they are translated, rotated or scaled. Due to the locality of the characterization, images can be retrieved even if only a small part of the image is given as well as in the presence of occlusions. A voting algorithm, following the idea of a Hough transform, and semi local constraints allow us to develop a new method which is robust to noise, to scene clutter and small perspective deformations. Experiments show an efficient recognition for different types of images. The approach has been validated on an image database containing 1020 images, some of them being very similar by structure, texture or shape.