Jiachen Zhang, Giovanni Lo Bianco, J. Christopher Beck
{"title":"Solving Job-Shop Scheduling Problems with QUBO-Based Specialized Hardware","authors":"Jiachen Zhang, Giovanni Lo Bianco, J. Christopher Beck","doi":"10.1609/icaps.v32i1.19826","DOIUrl":null,"url":null,"abstract":"The emergence of specialized hardware, such as quantum computers and Digital/CMOS annealers, and the slowing of performance growth of general-purpose hardware raises an important question for our community: how can the high-performance, specialized solvers be used for planning and scheduling problems? In this work, we focus on the job-shop scheduling problem (JSP) and Quadratic Unconstrained Binary Optimization (QUBO) models, the mathematical formulation shared by a number of novel hardware platforms. We study two direct QUBO models of JSP and propose a novel large neighborhood search (LNS) approach, that hybridizes a QUBO model with constraint programming (CP). Empirical results show that our LNS approach significantly outperforms classical CP-based LNS methods and a mixed integer programming model, while being competitive with CP for large problem instances. This work is the first approach that we are aware of that can solve non-trivial JSPs using QUBO hardware, albeit as part of a hybrid algorithm.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The emergence of specialized hardware, such as quantum computers and Digital/CMOS annealers, and the slowing of performance growth of general-purpose hardware raises an important question for our community: how can the high-performance, specialized solvers be used for planning and scheduling problems? In this work, we focus on the job-shop scheduling problem (JSP) and Quadratic Unconstrained Binary Optimization (QUBO) models, the mathematical formulation shared by a number of novel hardware platforms. We study two direct QUBO models of JSP and propose a novel large neighborhood search (LNS) approach, that hybridizes a QUBO model with constraint programming (CP). Empirical results show that our LNS approach significantly outperforms classical CP-based LNS methods and a mixed integer programming model, while being competitive with CP for large problem instances. This work is the first approach that we are aware of that can solve non-trivial JSPs using QUBO hardware, albeit as part of a hybrid algorithm.