Sensorless Power Maximization of PMSG Based Isolated Wind-Battery Hybrid System Using Adaptive Neuro-Fuzzy Controller

Mukhtiar Singh, A. Chandra, Bhim Singh
{"title":"Sensorless Power Maximization of PMSG Based Isolated Wind-Battery Hybrid System Using Adaptive Neuro-Fuzzy Controller","authors":"Mukhtiar Singh, A. Chandra, Bhim Singh","doi":"10.1109/IAS.2010.5615370","DOIUrl":null,"url":null,"abstract":"This paper presents a novel Adaptive Network-Based Fuzzy Inference System(ANFIS) for the optimal control of permanent magnet synchronous generator (PMSG) to extract maximum power without the need of speed & position sensors or any complex estimating algorithm. The control algorithm determines the optimal value of torque controlling current component as a function of change in output power. The error between the optimal values of torque current and actual current is utilized to train the ANFIS structure using error back propagation method. In the proposed work, an isolated wind-battery hybrid system is considered, where a boost chopper is used to control the PMSG. A buck-boost converter is used to maintain constant DC-Link voltage and to interface an efficient battery energy storage system (BESS) in order to meet fluctuating load demand under varying wind conditions. The proposed strategy is realized and simulated in MATLAB/SPS environment. The simulation results under dynamic operating conditions are provided to demonstrate the effectiveness of proposed strategy.","PeriodicalId":317643,"journal":{"name":"2010 IEEE Industry Applications Society Annual Meeting","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2010.5615370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents a novel Adaptive Network-Based Fuzzy Inference System(ANFIS) for the optimal control of permanent magnet synchronous generator (PMSG) to extract maximum power without the need of speed & position sensors or any complex estimating algorithm. The control algorithm determines the optimal value of torque controlling current component as a function of change in output power. The error between the optimal values of torque current and actual current is utilized to train the ANFIS structure using error back propagation method. In the proposed work, an isolated wind-battery hybrid system is considered, where a boost chopper is used to control the PMSG. A buck-boost converter is used to maintain constant DC-Link voltage and to interface an efficient battery energy storage system (BESS) in order to meet fluctuating load demand under varying wind conditions. The proposed strategy is realized and simulated in MATLAB/SPS environment. The simulation results under dynamic operating conditions are provided to demonstrate the effectiveness of proposed strategy.
基于自适应神经模糊控制器的PMSG孤立风-电池混合系统无传感器功率最大化
本文提出了一种新的基于自适应网络的模糊推理系统(ANFIS),用于永磁同步发电机(PMSG)的最优控制,不需要速度和位置传感器或任何复杂的估计算法来提取最大功率。控制算法根据输出功率的变化确定转矩控制电流分量的最优值。利用转矩电流最优值与实际电流之间的误差,采用误差反向传播法对ANFIS结构进行训练。本文研究了一种孤立风-电池混合系统,该系统采用升压斩波器控制PMSG。buck-boost变换器用于保持恒定的DC-Link电压,并与高效的电池储能系统(BESS)连接,以满足不同风力条件下的波动负荷需求。在MATLAB/SPS环境下对该策略进行了实现和仿真。动态工况下的仿真结果验证了所提策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信