milliEye

Xian Shuai, Yulin Shen, Yi Tang, Shuyao Shi, Luping Ji, Guoliang Xing
{"title":"milliEye","authors":"Xian Shuai, Yulin Shen, Yi Tang, Shuyao Shi, Luping Ji, Guoliang Xing","doi":"10.1145/3450268.3453532","DOIUrl":null,"url":null,"abstract":"A wide range of advanced deep learning algorithms have recently been proposed for image classification and object detection. However, the effectiveness of these methods can be significantly restricted in many real-world scenarios where the visibility or illumination is poor. Compared to RGB cameras, millimeter-wave (mmWave) radars are immune to the above environmental variability and can assist cameras under adverse conditions. To this end, we propose milliEye, a lightweight mmWave radar and camera fusion system for robust object detection on the edge platforms. milliEye has several key advantages over existing sensor fusion approaches. First, while milliEye fuses two sensing modalities in a learning-based fashion, it requires only a small amount of labeled image/radar data of a new scene as it can fully utilize large public image datasets for extensive training. This salient feature enables milliEye to adapt to highly complex real-world environments. Second, based on a novel architecture that decouples the image-based object detector from other modules, milliEye is compatible with different off-the-shelf image-based object detectors. As a result, it can take advantage of the rapid progress of object detection algorithms. Moreover, thanks to the highly compute-efficient fusion approach, milliEye is lightweight and thus suitable for edge-based real-time applications. To evaluate the performance of milliEye, we collect a new radar and camera fusion dataset for object detection, which contains both ordinary-light and low-light illumination conditions. The results show that milliEye can provide substantial performance boosts over state-of-the-art image-based object detectors, including Tiny YOLOv3 and SSD, especially in low-light scenes, while incurring low compute overhead on edge platforms.","PeriodicalId":130134,"journal":{"name":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","volume":"76 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Internet-of-Things Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3450268.3453532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A wide range of advanced deep learning algorithms have recently been proposed for image classification and object detection. However, the effectiveness of these methods can be significantly restricted in many real-world scenarios where the visibility or illumination is poor. Compared to RGB cameras, millimeter-wave (mmWave) radars are immune to the above environmental variability and can assist cameras under adverse conditions. To this end, we propose milliEye, a lightweight mmWave radar and camera fusion system for robust object detection on the edge platforms. milliEye has several key advantages over existing sensor fusion approaches. First, while milliEye fuses two sensing modalities in a learning-based fashion, it requires only a small amount of labeled image/radar data of a new scene as it can fully utilize large public image datasets for extensive training. This salient feature enables milliEye to adapt to highly complex real-world environments. Second, based on a novel architecture that decouples the image-based object detector from other modules, milliEye is compatible with different off-the-shelf image-based object detectors. As a result, it can take advantage of the rapid progress of object detection algorithms. Moreover, thanks to the highly compute-efficient fusion approach, milliEye is lightweight and thus suitable for edge-based real-time applications. To evaluate the performance of milliEye, we collect a new radar and camera fusion dataset for object detection, which contains both ordinary-light and low-light illumination conditions. The results show that milliEye can provide substantial performance boosts over state-of-the-art image-based object detectors, including Tiny YOLOv3 and SSD, especially in low-light scenes, while incurring low compute overhead on edge platforms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信