Relational Database Query Optimization Strategy Based on Industrial Internet Situation Awareness System

Xiaofei Yao, Jin Li, Yaodong Tao, Shenglong Ji
{"title":"Relational Database Query Optimization Strategy Based on Industrial Internet Situation Awareness System","authors":"Xiaofei Yao, Jin Li, Yaodong Tao, Shenglong Ji","doi":"10.1109/icccs55155.2022.9846105","DOIUrl":null,"url":null,"abstract":"In relational databases, when the amount of data in a single table is too large, the retrieval performance of the data table will drop sharply. In this regard, this paper proposes a retrieval optimization strategy of relational databases based on the change data capture mechanism. Log-based data capture mechanism to capture the addition, deletion, and modification of relational databases in real time, and synchronize the changes of specified fields in the relational database to the non-relational database Elasticsearch in near real time. Elasticsearch stores all search conditions. Using Elasticsearch's advantages in the field of massive data retrieval, it effectively solves the retrieval problem of data tables with excessive data in a single table. At the same time, through the change data capture mechanism, unnecessary indexes in relational databases are reduced, and database data writing is improved. Performance. Applying the retrieval strategy proposed in this article to an industrial Internet situational awareness system proves that the strategy can effectively improve the data retrieval ability and performs well.","PeriodicalId":121713,"journal":{"name":"2022 7th International Conference on Computer and Communication Systems (ICCCS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icccs55155.2022.9846105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In relational databases, when the amount of data in a single table is too large, the retrieval performance of the data table will drop sharply. In this regard, this paper proposes a retrieval optimization strategy of relational databases based on the change data capture mechanism. Log-based data capture mechanism to capture the addition, deletion, and modification of relational databases in real time, and synchronize the changes of specified fields in the relational database to the non-relational database Elasticsearch in near real time. Elasticsearch stores all search conditions. Using Elasticsearch's advantages in the field of massive data retrieval, it effectively solves the retrieval problem of data tables with excessive data in a single table. At the same time, through the change data capture mechanism, unnecessary indexes in relational databases are reduced, and database data writing is improved. Performance. Applying the retrieval strategy proposed in this article to an industrial Internet situational awareness system proves that the strategy can effectively improve the data retrieval ability and performs well.
基于工业互联网态势感知系统的关系数据库查询优化策略
在关系数据库中,当单个表中的数据量过大时,数据表的检索性能会急剧下降。为此,本文提出了一种基于变化数据捕获机制的关系数据库检索优化策略。基于日志的数据捕获机制,实时捕捉关系数据库的添加、删除、修改,并将关系数据库中指定字段的变化,近乎实时地同步到非关系数据库Elasticsearch中。Elasticsearch存储所有的搜索条件。利用Elasticsearch在海量数据检索领域的优势,有效地解决了单个表中数据过多的数据表检索问题。同时,通过变更数据捕获机制,减少了关系数据库中不必要的索引,提高了数据库数据写入能力。表演将本文提出的检索策略应用于工业互联网态势感知系统,结果表明该策略能够有效提高数据检索能力,并取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信