{"title":"On the Information-Theoretic Limits of Noisy Sparse Phase Retrieval","authors":"Lan V. Truong, J. Scarlett","doi":"10.1109/ITW44776.2019.8989363","DOIUrl":null,"url":null,"abstract":"The support recovery problem consists of determining a sparse subset of variables that is relevant in generating a set of observations. In this paper, we study the support recovery problem in the phase retrieval model consisting of noisy phaseless measurements, which arises in a diverse range of settings such as optical detection, X-ray crystallography, electron microscopy, and coherent diffractive imaging. Our focus is on information- theoretic fundamental limits under an approximate recovery criterion, with Gaussian measurements and a simple discrete model for the sparse non-zero entries. Our bounds provide sharp thresholds with near-matching constant factors in several scaling regimes on the sparsity and signal-to-noise ratio.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The support recovery problem consists of determining a sparse subset of variables that is relevant in generating a set of observations. In this paper, we study the support recovery problem in the phase retrieval model consisting of noisy phaseless measurements, which arises in a diverse range of settings such as optical detection, X-ray crystallography, electron microscopy, and coherent diffractive imaging. Our focus is on information- theoretic fundamental limits under an approximate recovery criterion, with Gaussian measurements and a simple discrete model for the sparse non-zero entries. Our bounds provide sharp thresholds with near-matching constant factors in several scaling regimes on the sparsity and signal-to-noise ratio.