Spectral Goodness of Fit for Network Models

Jesse Shore, Benjamin Lubin
{"title":"Spectral Goodness of Fit for Network Models","authors":"Jesse Shore, Benjamin Lubin","doi":"10.2139/ssrn.2471270","DOIUrl":null,"url":null,"abstract":"We introduce a new statistic, 'spectral goodness of fit' (SGOF) to measure how well a network model explains the structure of an observed network. SGOF provides an absolute measure of fit, analogous to the standard R-squared in linear regression. Additionally, as it takes advantage of the properties of the spectrum of the graph Laplacian, it is suitable for comparing network models of diverse functional forms, including both fitted statistical models and algorithmic generative models of networks. After introducing, defining, and providing guidance for interpreting SGOF, we illustrate the properties of the statistic with a number of examples and comparisons to existing techniques. We show that such a spectral approach to assessing model fit fills gaps left by earlier methods and can be widely applied.","PeriodicalId":154248,"journal":{"name":"Interorganizational Networks & Organizational Behavior eJournal","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interorganizational Networks & Organizational Behavior eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2471270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We introduce a new statistic, 'spectral goodness of fit' (SGOF) to measure how well a network model explains the structure of an observed network. SGOF provides an absolute measure of fit, analogous to the standard R-squared in linear regression. Additionally, as it takes advantage of the properties of the spectrum of the graph Laplacian, it is suitable for comparing network models of diverse functional forms, including both fitted statistical models and algorithmic generative models of networks. After introducing, defining, and providing guidance for interpreting SGOF, we illustrate the properties of the statistic with a number of examples and comparisons to existing techniques. We show that such a spectral approach to assessing model fit fills gaps left by earlier methods and can be widely applied.
网络模型的谱拟合优度
我们引入了一个新的统计量,“谱拟合优度”(SGOF)来衡量网络模型解释观察到的网络结构的程度。SGOF提供了一个绝对的拟合度量,类似于线性回归中的标准r平方。此外,由于利用了图拉普拉斯谱的特性,它适用于比较各种功能形式的网络模型,包括网络的拟合统计模型和算法生成模型。在介绍、定义和提供解释SGOF的指导之后,我们通过一些示例和与现有技术的比较来说明统计量的属性。我们表明,这种评估模型拟合的光谱方法填补了早期方法留下的空白,可以广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信