J. Wubben, Francisco Fabra, C. Calafate, Tomasz Krzeszowski, J. Márquez-Barja, Juan-Carlos Cano, P. Manzoni
{"title":"A vision-based system for autonomous vertical landing of unmanned aerial vehicles","authors":"J. Wubben, Francisco Fabra, C. Calafate, Tomasz Krzeszowski, J. Márquez-Barja, Juan-Carlos Cano, P. Manzoni","doi":"10.1109/DS-RT47707.2019.8958701","DOIUrl":null,"url":null,"abstract":"Over the last few years, different researchers have been developing protocols and applications in order to land unmanned aerial vehicles (UAVs) autonomously. However, most of the proposed protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV applications, such as package retrieval and delivery. Therefore, in this paper, we present a solution for high precision landing based on the use of ArUco markers. In our solution, a UAV equipped with a camera is able to detect ArUco markers from an altitude of 20 meters. Once the marker is detected, the UAV changes its flight behavior in order to land on the exact position where the marker is located. We evaluated our proposal using our own UAV simulation platform (ArduSim), and validated it using real UAVs. The results show an average offset of only 11 centimeters, which vastly improves the landing accuracy compared to the traditional GPS-based landing, that typically deviates from the intended target by 1 to 3 meters.","PeriodicalId":377914,"journal":{"name":"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT47707.2019.8958701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Over the last few years, different researchers have been developing protocols and applications in order to land unmanned aerial vehicles (UAVs) autonomously. However, most of the proposed protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV applications, such as package retrieval and delivery. Therefore, in this paper, we present a solution for high precision landing based on the use of ArUco markers. In our solution, a UAV equipped with a camera is able to detect ArUco markers from an altitude of 20 meters. Once the marker is detected, the UAV changes its flight behavior in order to land on the exact position where the marker is located. We evaluated our proposal using our own UAV simulation platform (ArduSim), and validated it using real UAVs. The results show an average offset of only 11 centimeters, which vastly improves the landing accuracy compared to the traditional GPS-based landing, that typically deviates from the intended target by 1 to 3 meters.