Nonlinear spatial domain first order moment estimation in magnitude resonance imaging data

K. Sim, C. Toa
{"title":"Nonlinear spatial domain first order moment estimation in magnitude resonance imaging data","authors":"K. Sim, C. Toa","doi":"10.1109/ICORAS.2016.7872627","DOIUrl":null,"url":null,"abstract":"A new method for signal estimation in the magnitude resonance imaging (MRI) which follows Rician distribution data is proposed. Sigma estimation in the MRI is importance for the various post-processing tasks. Although different methods for sigma estimation of MRI are available, most of these methods require multiple images. In this paper, Nonlinear spatial domain first order moment (NSDFOM) estimator technique is focused. This estimator is then compared with other estimators in terms of the sigma estimation which used only a single image. The experimental result shows that NSDFOM method able to generate more accurate sigma estimation.","PeriodicalId":393534,"journal":{"name":"2016 International Conference on Robotics, Automation and Sciences (ICORAS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Robotics, Automation and Sciences (ICORAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORAS.2016.7872627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A new method for signal estimation in the magnitude resonance imaging (MRI) which follows Rician distribution data is proposed. Sigma estimation in the MRI is importance for the various post-processing tasks. Although different methods for sigma estimation of MRI are available, most of these methods require multiple images. In this paper, Nonlinear spatial domain first order moment (NSDFOM) estimator technique is focused. This estimator is then compared with other estimators in terms of the sigma estimation which used only a single image. The experimental result shows that NSDFOM method able to generate more accurate sigma estimation.
幅度共振成像数据的非线性空间域一阶矩估计
提出了一种新的磁共振成像(MRI)信号估计方法。核磁共振成像中的西格玛估计对于各种后处理任务非常重要。虽然MRI的sigma估计方法不同,但大多数方法都需要多幅图像。本文主要研究了非线性空间域一阶矩估计技术。然后将该估计器与仅使用单个图像的sigma估计的其他估计器进行比较。实验结果表明,NSDFOM方法能够产生更精确的西格玛估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信