Online person identification and new person discovery using appearance features

Yanyun Lu, A. Fleury, J. Boonaert, S. Lecoeuche, S. Ambellouis
{"title":"Online person identification and new person discovery using appearance features","authors":"Yanyun Lu, A. Fleury, J. Boonaert, S. Lecoeuche, S. Ambellouis","doi":"10.1109/EAIS.2015.7368794","DOIUrl":null,"url":null,"abstract":"Person identification is an important but still challenging problem in video surveillance. This work designs a completely automatic appearance-based person identification system, which has the ability to achieve new person discovery and classification. The proposed system consists of three modules: background and silhouette separation; feature extraction and selection; and online person identification. The Self-Adaptive Kernel Machine (SAKM) algorithm is used to differentiate existing persons who can be classified from new persons who have to be learnt and added. A new video database with 22 persons is created in real-life environments. The experimental results show that the proposed system achieves satisfying recognition rates of over 90% on person classification with novelty identification.","PeriodicalId":325875,"journal":{"name":"2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2015.7368794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Person identification is an important but still challenging problem in video surveillance. This work designs a completely automatic appearance-based person identification system, which has the ability to achieve new person discovery and classification. The proposed system consists of three modules: background and silhouette separation; feature extraction and selection; and online person identification. The Self-Adaptive Kernel Machine (SAKM) algorithm is used to differentiate existing persons who can be classified from new persons who have to be learnt and added. A new video database with 22 persons is created in real-life environments. The experimental results show that the proposed system achieves satisfying recognition rates of over 90% on person classification with novelty identification.
利用外表特征进行在线人物识别和新人发现
在视频监控中,人员识别是一个重要而又具有挑战性的问题。本工作设计了一个完全自动化的基于外貌的人物识别系统,该系统具有实现新人发现和分类的能力。该系统包括三个模块:背景和轮廓分离;特征提取与选择;以及在线身份识别。使用自适应核机(SAKM)算法来区分现有的可分类人员和需要学习和添加的新人员。在现实环境中创建了一个包含22人的新视频数据库。实验结果表明,该系统对具有新颖性的人物分类的识别率达到了90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信