H. Ichikawa, S. Yokogawa, Yuusuke Kawakita, K. Sawada, T. Sogabe, Atsushi Minegishi, H. Uehara
{"title":"An Approach to Renewable-Energy Dominant Grids via Distributed Electrical Energy Platform for IoT Systems","authors":"H. Ichikawa, S. Yokogawa, Yuusuke Kawakita, K. Sawada, T. Sogabe, Atsushi Minegishi, H. Uehara","doi":"10.1109/SmartGridComm.2019.8909762","DOIUrl":null,"url":null,"abstract":"Increasing the proportion of renewable energy— particularly solar energy—in global energy consumption will increase the electricity generated and consumed in the vicinity of consumers thereby limiting the role of centralized power grids to only assure the security of electricity. The inherent features of renewable energy, including the fluctuation in the amount of electricity generated and the time at which electricity can be generated, call for the need of large energy storage systems. Drastic changes would be required not only in the architecture but also in the business models of electricity supply systems. We propose a platform called a “virtual grid system” as a foothold originating from a disruptive innovation strategy to create renewable-energy dominant infrastructures. The system is designed for powering systems comprising IoT devices connected by USB Type-C cables with power delivery protocol (USB-C PD) and for replacing the proliferating primitive off-grid solar systems to provide electricity access to more than 360 million people worldwide. The virtual grid system dynamically creates a power distribution subsystem called a “virtual grid” to be included in an IoT application system. It controls electric flows from power source devices to be synthesized and distributed to load devices in the virtual grid via hub devices called “virtual grid hubs (VG-hub).” A method is developed to control electric flows with concise demand descriptions, and it achieves an optimized flow setting over VG-hub networks using graph theoretic algorithms. A distributed implementation of the virtual grid hub is discussed to increase the distributable power, while the current virtual grid hubs handle too small power for main stream power customers.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Increasing the proportion of renewable energy— particularly solar energy—in global energy consumption will increase the electricity generated and consumed in the vicinity of consumers thereby limiting the role of centralized power grids to only assure the security of electricity. The inherent features of renewable energy, including the fluctuation in the amount of electricity generated and the time at which electricity can be generated, call for the need of large energy storage systems. Drastic changes would be required not only in the architecture but also in the business models of electricity supply systems. We propose a platform called a “virtual grid system” as a foothold originating from a disruptive innovation strategy to create renewable-energy dominant infrastructures. The system is designed for powering systems comprising IoT devices connected by USB Type-C cables with power delivery protocol (USB-C PD) and for replacing the proliferating primitive off-grid solar systems to provide electricity access to more than 360 million people worldwide. The virtual grid system dynamically creates a power distribution subsystem called a “virtual grid” to be included in an IoT application system. It controls electric flows from power source devices to be synthesized and distributed to load devices in the virtual grid via hub devices called “virtual grid hubs (VG-hub).” A method is developed to control electric flows with concise demand descriptions, and it achieves an optimized flow setting over VG-hub networks using graph theoretic algorithms. A distributed implementation of the virtual grid hub is discussed to increase the distributable power, while the current virtual grid hubs handle too small power for main stream power customers.