Knowledge discovery in oceanographic databases: issues of complications in data sources

R. Ladner, F. Petry
{"title":"Knowledge discovery in oceanographic databases: issues of complications in data sources","authors":"R. Ladner, F. Petry","doi":"10.1109/OCEANS.2002.1192146","DOIUrl":null,"url":null,"abstract":"Data mining or knowledge discovery refers to a variety of techniques having the intent of uncovering useful patterns and association from large databases. We have been working with data mining techniques for a variety of oceanographic data and have encountered a number of troublesome issues relative to available data. We describe the steps preparatory to data mining and three data mining techniques that we have applied to spatio-temporal data. We include a detailed review of various sources of geospatial, oceanographic and meteorological data and associated issues inherent in their use in knowledge discovery. We also provide issues relevant to the difficulties in providing an overall integration of this heterogeneous data for knowledge discovery.","PeriodicalId":431594,"journal":{"name":"OCEANS '02 MTS/IEEE","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS '02 MTS/IEEE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2002.1192146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data mining or knowledge discovery refers to a variety of techniques having the intent of uncovering useful patterns and association from large databases. We have been working with data mining techniques for a variety of oceanographic data and have encountered a number of troublesome issues relative to available data. We describe the steps preparatory to data mining and three data mining techniques that we have applied to spatio-temporal data. We include a detailed review of various sources of geospatial, oceanographic and meteorological data and associated issues inherent in their use in knowledge discovery. We also provide issues relevant to the difficulties in providing an overall integration of this heterogeneous data for knowledge discovery.
海洋学数据库中的知识发现:数据源的复杂性问题
数据挖掘或知识发现是指旨在从大型数据库中发现有用模式和关联的各种技术。我们一直在为各种海洋学数据使用数据挖掘技术,并且遇到了一些与可用数据相关的麻烦问题。我们描述了数据挖掘的准备步骤和我们应用于时空数据的三种数据挖掘技术。我们详细回顾了地理空间、海洋学和气象数据的各种来源,以及在知识发现中使用这些数据所固有的相关问题。我们还提供了与为知识发现提供这种异构数据的全面集成的困难相关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信