{"title":"Color deep learning profilometry for single-shot 3D shape measurement","authors":"Jiaming Qian, Shijie Feng, Yixuan Li, Tianyang Tao, Qian Chen, C. Zuo","doi":"10.1117/12.2585697","DOIUrl":null,"url":null,"abstract":"Fringe projection profilometry (FPP) has been more widely applied in fields such as intelligent manufacturing and medical plastic surgery. Recovering the three-dimensional (3D) surface of an object from a single frame image has always been the pursued goal in FPP. The color fringe projection method is one of the most potential technologies to realize single-shot 3D imaging because of the multi-channel multiplexing. Inspired by the recent success of deep learning technologies for phase analysis, we propose a novel single-shot 3D shape measurement approach named color deep learning profilometry (CDLP). Through `learning' on extensive data sets, the properly trained neural network can gradually `predict' the crosstalk-free high-quality absolute phase corresponding to the depth information of the object directly from a color fringe image. Experimental results demonstrate that our method can obtain accurate phase information acquisition and robust phase unwrapping without any complex pre/post-processing.","PeriodicalId":370739,"journal":{"name":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2585697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fringe projection profilometry (FPP) has been more widely applied in fields such as intelligent manufacturing and medical plastic surgery. Recovering the three-dimensional (3D) surface of an object from a single frame image has always been the pursued goal in FPP. The color fringe projection method is one of the most potential technologies to realize single-shot 3D imaging because of the multi-channel multiplexing. Inspired by the recent success of deep learning technologies for phase analysis, we propose a novel single-shot 3D shape measurement approach named color deep learning profilometry (CDLP). Through `learning' on extensive data sets, the properly trained neural network can gradually `predict' the crosstalk-free high-quality absolute phase corresponding to the depth information of the object directly from a color fringe image. Experimental results demonstrate that our method can obtain accurate phase information acquisition and robust phase unwrapping without any complex pre/post-processing.