Kalman Filter Estimation of the KNW Model

A. Pelsser
{"title":"Kalman Filter Estimation of the KNW Model","authors":"A. Pelsser","doi":"10.2139/ssrn.3885556","DOIUrl":null,"url":null,"abstract":"This technical note gives implementation notes for estimating the Koijen-Nijman-Werker model from historical data based on a Kalman filter. We provide an independent derivation of the KNW model. We propose a different implementation of the state-space formulation of the KNW model and we test the impact of two different specifications for the initialisation of the Kalman filter maximum-likelihood estimation. By doing so, we provide an independent verification of the parameter estimations provided by DNB for the Committee Parameters. We find that the parameter estimates reported by DNB and our own parameter estimates are very similar.","PeriodicalId":222384,"journal":{"name":"DecisionSciRN: Other Forecasting (Sub-Topic)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DecisionSciRN: Other Forecasting (Sub-Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3885556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This technical note gives implementation notes for estimating the Koijen-Nijman-Werker model from historical data based on a Kalman filter. We provide an independent derivation of the KNW model. We propose a different implementation of the state-space formulation of the KNW model and we test the impact of two different specifications for the initialisation of the Kalman filter maximum-likelihood estimation. By doing so, we provide an independent verification of the parameter estimations provided by DNB for the Committee Parameters. We find that the parameter estimates reported by DNB and our own parameter estimates are very similar.
KNW模型的卡尔曼滤波估计
本技术说明给出了基于卡尔曼滤波器从历史数据估计Koijen-Nijman-Werker模型的实现说明。我们提供了一个独立的KNW模型的推导。我们提出了KNW模型的状态空间公式的不同实现,并测试了两种不同规范对卡尔曼滤波器最大似然估计初始化的影响。通过这样做,我们为DNB为委员会参数提供的参数估计提供了独立的验证。我们发现DNB报告的参数估计和我们自己的参数估计非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信