Mining Multidimensional Data Using Clustering Techniques

M. Pagani, Gloria Bordogna, M. Valle
{"title":"Mining Multidimensional Data Using Clustering Techniques","authors":"M. Pagani, Gloria Bordogna, M. Valle","doi":"10.1109/DEXA.2007.112","DOIUrl":null,"url":null,"abstract":"We describe a novel data mining procedure to discover relevant associations in multidimensional data. The procedure applies hierarchical clustering to distinct pattern sets(views) of the same dataset and identifies the best partitions in the two dendrograms that exhibit the greatest correlation.Finally the most relevant associations between pattern sets characterizing the most correlated clusters in the identified partitions are discovered. An application of the procedure to identify association between compositional views and performance views of a dataset of materials is discussed.","PeriodicalId":314834,"journal":{"name":"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2007.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We describe a novel data mining procedure to discover relevant associations in multidimensional data. The procedure applies hierarchical clustering to distinct pattern sets(views) of the same dataset and identifies the best partitions in the two dendrograms that exhibit the greatest correlation.Finally the most relevant associations between pattern sets characterizing the most correlated clusters in the identified partitions are discovered. An application of the procedure to identify association between compositional views and performance views of a dataset of materials is discussed.
利用聚类技术挖掘多维数据
我们描述了一种新的数据挖掘过程来发现多维数据中的相关关联。该过程将分层聚类应用于同一数据集的不同模式集(视图),并确定两个树形图中表现出最大相关性的最佳分区。最后,发现识别分区中最相关簇的模式集之间最相关的关联。讨论了识别材料数据集的组成视图和性能视图之间关联的过程的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信