{"title":"Hybrids on Steroids: SGX-Based High Performance BFT","authors":"J. Behl, T. Distler, R. Kapitza","doi":"10.1145/3064176.3064213","DOIUrl":null,"url":null,"abstract":"With the advent of trusted execution environments provided by recent general purpose processors, a class of replication protocols has become more attractive than ever: Protocols based on a hybrid fault model are able to tolerate arbitrary faults yet reduce the costs significantly compared to their traditional Byzantine relatives by employing a small subsystem trusted to only fail by crashing. Unfortunately, existing proposals have their own price: We are not aware of any hybrid protocol that is backed by a comprehensive formal specification, complicating the reasoning about correctness and implications. Moreover, current protocols of that class have to be performed largely sequentially. Hence, they are not well-prepared for just the modern multi-core processors that bring their very own fault model to a broad audience. In this paper, we present Hybster, a new hybrid state-machine replication protocol that is highly parallelizable and specified formally. With over 1 million operations per second using only four cores, the evaluation of our Intel SGX-based prototype implementation shows that Hybster makes hybrid state-machine replication a viable option even for today's very demanding critical services.","PeriodicalId":262089,"journal":{"name":"Proceedings of the Twelfth European Conference on Computer Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"113","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3064176.3064213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 113
Abstract
With the advent of trusted execution environments provided by recent general purpose processors, a class of replication protocols has become more attractive than ever: Protocols based on a hybrid fault model are able to tolerate arbitrary faults yet reduce the costs significantly compared to their traditional Byzantine relatives by employing a small subsystem trusted to only fail by crashing. Unfortunately, existing proposals have their own price: We are not aware of any hybrid protocol that is backed by a comprehensive formal specification, complicating the reasoning about correctness and implications. Moreover, current protocols of that class have to be performed largely sequentially. Hence, they are not well-prepared for just the modern multi-core processors that bring their very own fault model to a broad audience. In this paper, we present Hybster, a new hybrid state-machine replication protocol that is highly parallelizable and specified formally. With over 1 million operations per second using only four cores, the evaluation of our Intel SGX-based prototype implementation shows that Hybster makes hybrid state-machine replication a viable option even for today's very demanding critical services.