Uma versão não-interativa do k-NN sobre dados cifrados

Hilder V. L. Pereira, Diego F. Aranha
{"title":"Uma versão não-interativa do k-NN sobre dados cifrados","authors":"Hilder V. L. Pereira, Diego F. Aranha","doi":"10.5753/sbseg.2016.19310","DOIUrl":null,"url":null,"abstract":"Tarefas de aprendizagem de máquina normalmente exigem que grandes quantidades de dados sensíveis sejam compartilhados, o que é notoriamente intrusivo em termos de privacidade. Terceirizar esta computação para a nuvem requer que o servidor seja confiável, introduzindo um requisito de segurança não realista. Neste trabalho, propomos uma versão do classificador k-NN que pode ser executada na nuvem sobre dados cifrados de uma forma não interativa, combinando cifração que preserva a ordem e criptografia homomórfica. De acordo com nossos experimentos, a versão sobre dados cifrados alcança a mesma precisão que a convencional, mas com impactos consideráveis no desempenho original. Contudo, a penalidade de desempenho não é proibitiva e a solução continua viável para uso prático, quando as propriedades de segurança adicionais fornecidas são examinadas em detalhe. Em particular, o servidor em nuvem não precisa ser confiável para além da execução correta do protocolo e, como todos os dados recebidos são cifrados, o servidor não aprende os valores do conjunto de dados, o número de classes, os vetores a serem classificados nem as classes a eles atribuídas.","PeriodicalId":337903,"journal":{"name":"Anais do XVI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2016)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2016)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg.2016.19310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tarefas de aprendizagem de máquina normalmente exigem que grandes quantidades de dados sensíveis sejam compartilhados, o que é notoriamente intrusivo em termos de privacidade. Terceirizar esta computação para a nuvem requer que o servidor seja confiável, introduzindo um requisito de segurança não realista. Neste trabalho, propomos uma versão do classificador k-NN que pode ser executada na nuvem sobre dados cifrados de uma forma não interativa, combinando cifração que preserva a ordem e criptografia homomórfica. De acordo com nossos experimentos, a versão sobre dados cifrados alcança a mesma precisão que a convencional, mas com impactos consideráveis no desempenho original. Contudo, a penalidade de desempenho não é proibitiva e a solução continua viável para uso prático, quando as propriedades de segurança adicionais fornecidas são examinadas em detalhe. Em particular, o servidor em nuvem não precisa ser confiável para além da execução correta do protocolo e, como todos os dados recebidos são cifrados, o servidor não aprende os valores do conjunto de dados, o número de classes, os vetores a serem classificados nem as classes a eles atribuídas.
关于加密数据的k-NN的非交互版本
机器学习任务通常需要共享大量敏感数据,这是出了名的侵犯隐私。将这种计算外包到云需要服务器是可靠的,这引入了一个不切实际的安全要求。在这项工作中,我们提出了一个k-NN分类器的版本,它可以在云上以非交互的方式对加密数据执行,结合了顺序保持加密和同态加密。根据我们的实验,加密版本达到了与传统版本相同的精度,但对原始性能有相当大的影响。然而,性能惩罚并不令人望而却步,当详细检查提供的额外安全特性时,解决方案在实际使用中仍然可行。特别是,除了协议的正确执行外,云服务器不需要可靠,而且由于所有接收到的数据都是加密的,服务器不知道数据集的值、类的数量、要分类的向量或分配给它们的类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信