Covert Communication over Federated Learning Channel

S. Kim
{"title":"Covert Communication over Federated Learning Channel","authors":"S. Kim","doi":"10.1109/IMCOM56909.2023.10035576","DOIUrl":null,"url":null,"abstract":"We propose a novel covert communication technique between the federated learning (FL) server and participants without affecting the FL performance. The FL server superimposes the covert message onto the aggregated gradient and broadcasts the superimposed signal to all FL participants. FL participants decode the covert message treating the aggregated gradient as interference, and restore the original global model after removing the covert message from the superimposed signal. Therefore, the FL performance is not affected by sending the covert message. We analyze the covertness of communication against the adversary that monitors the statistical distribution of model updates. We derive the maximum achievable transmission rate of the covert message without being detected by the adversary and without affecting the federated learning performance.","PeriodicalId":230213,"journal":{"name":"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM56909.2023.10035576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel covert communication technique between the federated learning (FL) server and participants without affecting the FL performance. The FL server superimposes the covert message onto the aggregated gradient and broadcasts the superimposed signal to all FL participants. FL participants decode the covert message treating the aggregated gradient as interference, and restore the original global model after removing the covert message from the superimposed signal. Therefore, the FL performance is not affected by sending the covert message. We analyze the covertness of communication against the adversary that monitors the statistical distribution of model updates. We derive the maximum achievable transmission rate of the covert message without being detected by the adversary and without affecting the federated learning performance.
联邦学习信道上的秘密通信
提出了一种在不影响联邦学习性能的情况下,在联邦学习服务器和参与者之间进行隐蔽通信的新方法。FL服务器将隐蔽消息叠加到聚合梯度上,并将叠加的信号广播给所有FL参与者。FL参与者将聚集的梯度作为干扰对隐蔽信息进行解码,并从叠加信号中去除隐蔽信息后恢复原始全局模型。因此,发送隐蔽消息不会影响FL的性能。我们针对监视模型更新的统计分布的对手分析通信的隐蔽性。我们在不被对手检测和不影响联邦学习性能的情况下推导出隐蔽消息的最大可实现传输速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信