Shuqing Bian, Wayne Xin Zhao, Jinpeng Wang, Ji-rong Wen
{"title":"A Relevant and Diverse Retrieval-enhanced Data Augmentation Framework for Sequential Recommendation","authors":"Shuqing Bian, Wayne Xin Zhao, Jinpeng Wang, Ji-rong Wen","doi":"10.1145/3511808.3557071","DOIUrl":null,"url":null,"abstract":"Within online platforms, it is critical to capture the semantics of sequential user behaviors for accurately predicting user interests. Recently, significant progress has been made in sequential recommendation with deep learning. However, existing neural sequential recommendation models may not perform well in practice due to the sparsity of the real-world data especially in cold-start scenarios. To tackle this problem, we propose the model ReDA, which stands for Retrieval-enhanced Data Augmentation for modeling sequential user behaviors. The main idea of our approach is to leverage the related information from similar users for generating both relevant and diverse augmentation. First, we train a neural retriever to retrieve the augmentation users according to the se- mantic similarity between user representations, and then conduct two types of data augmentation to generate augmented user representations. Furthermore, these augmented data are incorporated in a contrastive learning framework for learning more capable representations. Extensive experiments conducted on both public and industry datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods, especially when only limited training data is available.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Within online platforms, it is critical to capture the semantics of sequential user behaviors for accurately predicting user interests. Recently, significant progress has been made in sequential recommendation with deep learning. However, existing neural sequential recommendation models may not perform well in practice due to the sparsity of the real-world data especially in cold-start scenarios. To tackle this problem, we propose the model ReDA, which stands for Retrieval-enhanced Data Augmentation for modeling sequential user behaviors. The main idea of our approach is to leverage the related information from similar users for generating both relevant and diverse augmentation. First, we train a neural retriever to retrieve the augmentation users according to the se- mantic similarity between user representations, and then conduct two types of data augmentation to generate augmented user representations. Furthermore, these augmented data are incorporated in a contrastive learning framework for learning more capable representations. Extensive experiments conducted on both public and industry datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods, especially when only limited training data is available.