Text Clustering via Term Semantic Units

L. Jing, Jiali Yun, Jian Yu, Houkuan Huang
{"title":"Text Clustering via Term Semantic Units","authors":"L. Jing, Jiali Yun, Jian Yu, Houkuan Huang","doi":"10.1109/WI-IAT.2010.23","DOIUrl":null,"url":null,"abstract":"How best to represent text data is an important problem in text mining tasks including information retrieval, clustering, classification and etc.. In this paper, we proposed a compact document representation with term semantic units which are identified from the implicit and explicit semantic information. Among it, the implicit semantic information is extracted from syntactic content via statistical methods such as latent semantic indexing and information bottleneck. The explicit semantic information is mined from the external semantic resource (Wikipedia). The proposed compact representation model can map a document collection in a low-dimension space (term semantic units which are much less than the number of all unique terms). Experimental results on real data sets have shown that the compact representation efficiently improve the performance of text clustering.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

How best to represent text data is an important problem in text mining tasks including information retrieval, clustering, classification and etc.. In this paper, we proposed a compact document representation with term semantic units which are identified from the implicit and explicit semantic information. Among it, the implicit semantic information is extracted from syntactic content via statistical methods such as latent semantic indexing and information bottleneck. The explicit semantic information is mined from the external semantic resource (Wikipedia). The proposed compact representation model can map a document collection in a low-dimension space (term semantic units which are much less than the number of all unique terms). Experimental results on real data sets have shown that the compact representation efficiently improve the performance of text clustering.
基于术语语义单元的文本聚类
如何最好地表示文本数据是文本挖掘任务中的一个重要问题,包括信息检索、聚类、分类等。在本文中,我们提出了一种紧凑的文档表示方法,该方法使用术语语义单位从隐式和显式语义信息中识别出来。其中,通过潜在语义索引和信息瓶颈等统计方法从句法内容中提取隐含语义信息。显式语义信息从外部语义资源(维基百科)中挖掘。提出的紧凑表示模型可以映射低维空间中的文档集合(术语语义单元,其数量远远小于所有唯一术语的数量)。在真实数据集上的实验结果表明,紧凑表示有效地提高了文本聚类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信